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Abstract 

Modeling meteorological variables is a vital aspect of climate change studies. Awareness of the 

frequency and magnitude of climate change is a critical concern for mitigating the risks associated with 

climate change. Probability distribution models are valuable tools for a frequency study of climate 

variables since it measures how the probability distribution able to fit well in the data series. Monthly 

meteorological data including average temperature, wind speed, and rainfall were analyzed in order to 

determine the most suited probability distribution model for Kuala Krai district. The probability 

distributions that were used in the analysis were Beta, Burr, Gamma, Lognormal, and Weibull 

distributions. To estimate the parameters for each distribution, the maximum likelihood estimate (MLE) 

was employed. Goodness-of-fit tests such as the Kolmogorov-Smirnov, and Anderson-Darling tests 

were conducted to assess the best suited model, and the test's reliability. Results from statistical studies 

indicate that Burr distributions better characterize the meteorological data of our research. The graph of 

probability density function, cumulative distribution function as well as Q-Q plot are presented.  

 

Keywords: Burr, Meteorology, Goodness-of-fit, Maximum Likelihood Estimation, Probability 
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1. Introduction  

Climate phenomena are observed to be multifaceted. The complexity of their multifaceted existence has 

only begun to be understood. It should be argued that even though chances of extreme weather events 

such as hurricanes, heat waves, floods, and storms are higher in certain areas, these occurrences can 

occur naturally all over the world and are not man-made. Many of the extreme weather events can be 

negatively blamed on natural phenomena as opposed to man-made. In this context, the normal decadal 
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or multi-decadal fluctuations in the environment provide the surroundings for anthropogenic climate 

changes (Seneviratne et al., 2012). Since this phenomenon is outlined, humans were able to understand 

more about the processes that happen in the broader picture of existence. In comparison, the climate is 

often generally defined as the average weather in a specific region, influenced by rainfall patterns, 

temperature, humidity, wind and seasons. Climate trends affect the natural ecosystems that form in the 

region. 

Moreover, economic activities and human societies are highly dependent on these trends. The current 

atmosphere is no longer what it was before, and previous statistics are not alone as a credible predictor 

for forecasting the future with other determinants or variables (Ehrlen & Morris, 2015). Unexpectedly 

fast changes arise as a result of negative or harmful effects occurring within natural environments. As 

far as these are concerned, there are many processes within communities that are primarily affected by 

climate patterns; climate affects where and how humans, plants and animals live and communicate with 

each other, especially in terms of food production, water availability and use, and health risks. For 

example, changes in the normal timing of precipitation and temperature in the atmosphere could affect 

the regular timing of plants and fruits and the insect hatching process and the time needed to flow as far 

as possible. Other than this, the well-contained pollination of plants, the reproduction of food for 

migrating birds, the spawning of fish, drinking water and irrigation, etc, may also be affected. 

Under normal conditions, some short-term seasonal climate change is viewed as normal. A long-

term occurrence may, however, suggest a climate that changes. These effects of climate change are the 

product of global warming. Global warming is the rise in global temperature, while changes in the 

external environment entail a narrower sense of climate change. Temperature and weather are primarily 

influenced the precipitation characteristics (Fu, Gao, Liang, & Liu, 2021). As a result, related changes 

in each of these aspects may have contributed to a change in precipitation. The study and modelling of 

the multivariable meteorological data by using the statistical distributions could provide a valuable 

contribution to understanding the characteristics of global warming. Knowing how climate changes can 

impact us is important for mitigating the risks of climate change. Probability models are useful for the 

study of climatological data because it measure how well the probability distribution function is able in 

capturing the data for each variable and each region (Perkins, Pitman, Holbrook, & McAneney, 2007). 

However, in a certain study it is still a matter of debate to select a suitable model. In this analysis, five 

probability distributions, namely Beta, Burr, Gamma, Lognormal, and Weibull (Jamaludin & Jemain, 

2007; Yusof & Mean, 2012; Zaharim, Najid, Razali, & Sopian, 2009), were selected. These methods 

are widely used on meteorological data to simplify the data for distribution analysis. According to 

Zaharim et al. (2009), the distribution of Burr is the best distribution that matches well with Malaysia's 

wind speed data.  

 

2. Materials and Methods  



Journal of Statistical Modeling and Analytics  Vol 3(1), 16-25. 2021 
 

18 
 

The following subsections present a summary of the data used and a brief overview of the methodology 

applied in this paper. 

 

2.1 Study area and data collection 

The data used in this study was collected from Kuala Krai Station, located in the center of Kelantan 

State, northeast of the Peninsular Region of Malaysia. Kuala Krai Station is located at an approximate 

latitude of 5° N and an approximate longitude of 102° E. The land is hilly and it is a region of tropical 

rainforest, once in great abundance. The Kuala Krai region is the meeting point of the two major rivers 

that form the Kelantan River at Kelantan. It flows near the capital city of Kelantan, Kota Bharu, to the 

South China Sea estuary. Kuala Krai experiences intense monsoons during which their average annual 

temperature reaches 26.8°C. Meanwhile, the average annual rainfall is 2713mm. The Malaysian 

Meteorological Department collected daily meteorological data consisting 24 hours of mean 

temperature (°C), maximum wind speed (m/s) and precipitation (mm) data from 1985 to 2009 

(Norrulashikin et al., 2015). 

 

2.2 Continuous distribution 

If random variables are continuous, the probabilities of a specific value can no longer be calculated 

because their corresponding probabilities are all nil. Therefore, when dealing with continuous random 

variables, the key concern is the possibility that random variables will take values within certain 

intervals. The probability of the case is afforded as follows: 

( ) ( )

b

a

P a X b f x dx     

For continuous random variables, in order to calculate the probability, we need to integrate the 

probability function called the probability density function (PDF). There are a variety of standard 

probability functions, but the most common one is related to the standard normal random variable 

(Andren, 2007). The probability density function of continuous random variable X is related to its 

cumulative distribution function (CDF). It is denoted in the same way as a discrete random variable. 

However, we have to integrate from minus infinity to the selected value for the continuous random 

variable, i.e.: 

( ) ( ) ( )

c

F c P X c f X dX


     

The five distributions used in this study is summarized in Table 1.  
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Table 1 Distribution functions 

Distribution PDF CDF 

Beta 1 2

1 2

1 1

1

1 2

1 ( ) ( )
( )

( , ) ( )

x a b x
f x

B b a

 

  

 

 

 



, 

with, 

-continuous shape parameter, 1 2, 0    

-continuous boundary parameter, a b  

1 2( ) ( , )zF x I     

where,  

x a
z

b a





 

a x b   

Burr 1

1
( )
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k

x
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f x

x
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
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  
     

, 

with, 

-continuous shape parameter, , 0k    

-continuous scale parameter, 0   

-continuous location parameter ( 0    for 

the three-parameter Burr distribution) 

( ) 1 1

k

x
F x







  
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where, x     
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( ) exp( / )
( )

x
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




 



 
  

with, 

-continuous shape parameter, 0   

-continuous scale parameter, 0   

-continuous location parameter ( 0   

yields the two-parameter Gamma 

distribution) 

/ ( )
( )

( )

x
F x

 






  
where, 

z   - Incomplete Gamma 

function 

 - Gamma function 

x     

Lognormal 2
1 ln

exp
2

( )
2

x

f x
x





 

  
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with 

-continuous parameter, 0,    

-continuous location parameter ( 0  yields 

the two-parameter Lognormal distribution) 

ln
( )

x
F x




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  
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where, 

  - Laplace integral 

x     

Weibull 1

( ) exp
x x

f x

 

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with 

-continuous shape parameter, 0   

-continuous scale parameter, 0   

-continuous location parameter ( 0  yields 

the two-parameter Weibull distribution) 

( ) 1 exp
x

F x





  
       

 

where, 

x     
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2.3 Parameter estimation method 

In order to obtain the probability distribution that fit the data well, there are parameter estimation 

method to be implemented in the formulation of probability distribution to ensure that the data fit the 

distribution as close as possible (Hussin & Yusof, 2020). The most accurate and commonly used 

parameter estimation is the Maximum Likelihood Estimation which also known as MLE method. MLE 

functioned by lowering the mean square error that associates with model parameter estimates. For a 

given function of 𝑓(𝑥), MLE is defined as the value of 𝑥 that maximizes the likelihood of 𝑓(𝑥) or the 

logarithm of the likelihood of 𝑓(𝑥). This process will decrease the situation of an important number of 

unlikely outcomes for 𝑥 to occur.  

 

2.4 Goodness-of-fit test 

The goodness-of-fit test is performed on statistical model to assess the degree to which the data set can 

be explained by that model. The measurement used for the goodness-of-fit test generally summarizes 

the difference between the observed values and the predicted values of the statistical model. Two 

goodness-of-fit measures like Kolmogorov-Smirnov (KS), and Anderson-Darling (AD) are used for this 

analysis at 0.05 level of significance. The null hypotheses and the alternative ones are: 

• H0: The data follows the distribution specified. 

• HA: The data does not follow the distribution specified. 

 

i. Kolmogorov-Smirnov (KS) 

The Kolmogorov-Smirnov statistic, D is based on the greatest vertical disparity between 

theoretical and empirical cumulative distribution functions. 

1

1
max ( ) , ( )i i

i n

i i
D F x F x

n n 

 
   

 
 

When the test statistic is greater than the critical value, the hypothesis of the null hypothesis is 

rejected at the 5% significance level. 

 

ii. Anderson-Darling (AD) 

The Anderson-Darling procedure discusses the disparity in cumulative distribution functions 

between the fit and expected cumulative distribution function. Using this measure, more weight is 

given to the tails than to the Kolmogorov-Smirnov test. Anderson-Darling statistic is given by, 

 2

1

1

1
(2 1). ln ( ) ln(1 ( ))

n

i n i

i

A n i F X F X
n

 



       

The statistical hypothesis is rejected at 5 percent significance level if the critical value obtained 

from the statistical table is lower than the test statistic, 
2A . 
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3. Results and Discussion 

The results of goodness-of-fit statistics summary and the ranking measures are shown in Table 2 and 

Table 3, respectively. The values in Table 2 represents the test statistics value for each goodness-of-fit 

test. While the ranking measures in Table 3 is identified from the values in Table 2. The smallest value 

of statistical test will be in rank 1 and the highest will be ranked 5. Based on Kolmogorov-Smirnov, and 

Anderson-Darling measures at 5% significance level, the Burr distribution best fits the patterns of 

temperature, wind speed, and rainfall data in Kuala Krai. As a result, the most prevalent meteorological 

variations in Kuala Krai are found in the Burr distribution. Meanwhile, Lognormal distributions for 

temperature and wind speed variables ranked last in contrast to other goodness-of-fit measures, and 

Beta distributions for rainfall variable did the least well. 

 

Table 2: Goodness-of-fit test statistics summary for all variables 

 Kolmogorov-Smirnov Anderson-Darling 

Distributions T WS R T WS R 

Beta 0.043 0.048 0.105 0.691 0.509 8.788 

Burr 0.031 0.032 0.050 0.416 0.364 0.937 

Gamma 0.054 0.047 0.071 1.148 0.647 3.158 

Lognormal 0.056 0.058 0.087 1.263 1.006 5.219 

Weibull 0.040 0.045 0.077 1.357 1.779 2.303 

Note: T represents temperature, WS represents wind speed, and R represents rainfall 

 

 

Table 3: Goodness-of-fit test ranking for continuous distribution of meteorological variables 

 Kolmogorov-Smirnov Anderson-Darling 

Distributions T WS R T WS R 

Beta 3 4 5 2 2 5 

Burr 1 1 1 1 1 1 

Gamma 4 3 2 3 3 3 

Lognormal 5 5 4 4 4 4 

Weibull 2 2 3 5 5 2 
Note: The ranking is in the order from 1 to 5; 1 is the best ranking and 5 is the 

worst ranking. T represents temperature, WS represents wind speed, and R 

represents rainfall. 
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Table 4: Fitting parameters of meteorological variables depend on various distributions. 

Distributions Temperature Wind Speed Rainfall 

Beta 

1 =210.2600 1 =3.9828 1 =0.9651 

2 =87.1670 2 =5.2250 2 =4.2680 

a =1.2281 a =4.4435 a =0.6000 

b =36.5740 b =11.9710 b =1173.9000 

Burr 

k =2.0590 k =2.4350 k =2.9843 

 =41.0870  =9.1328  =1.5994 

 =26.8680  =8.7178  =380.0900 

Gamma 
 =791.0100  =43.8270  =1.3524 

 =0.0331  =0.1757  =155.2200 

Lognormal 
 =0.0356  =0.1537  =0.9621 

 =3.2658  =2.0299  =4.9959 

Weibull 
 =35.0620  =8.0566  =1.2885 

 =26.6200  =8.1612  =228.4400 

 

The fitting parameters that required for the perfect fit with various distributions are documented in Table 

4. Different values may be assigned to the continuous shape parameters ( 1 2, , ,k   ), scale parameters 

( ,  ), and location parameters ( ,  ), depending on the types of data distribution. Figure 1 illustrates 

the probability density functions (PDF) of Burr and Lognormal distributions, which model the 

meteorological data well. Burr and Lognormal were used in this illustration since Burr represents the 

highest ranking and Lognormal represents the lowest ranking in the list of distributions used on this 

study. The PDF displays graphically different wind speed data properties including parameters of shape, 

scale, and location. Figure 2 demonstrates the contrast between Burr and Lognormal distribution in the 

cumulative distribution functions (CDF). The CDF graph is useful to precisely assess how well the data 

observed might match the distributions. In comparison to Lognormal distribution, the Burr distribution 

is clearly seen to fit well with the wind speed data. Previous research found that the distribution of Burr 

is the best distribution that matches well with Malaysia's wind speed data (Zaharim et al., 2009). Figure 

3 shows the Quantile-Quantile (Q-Q) plot for the Burr and Lognormal distribution of wind speed data. 

The Q-Q plot is used to determine how close a particular distribution is to the observed data.  In a 

nutshell, by using Q-Q plot, the testing distribution is the best model if the points lie on an 

approximately straight line. 
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Figure 1.1: Burr and Lognormal distributions fit 

the temperature data. 

Figure 1.2: Burr and Lognormal distributions fit 

the wind speed data. 

 

Figure 1.3: Burr and Lognormal distributions fit the rainfall data. 
 

  

Figure 2.1: The comparison between Burr and  

Lognormal distributions in CDF of the  

temperature data. 

Figure 2.2: The comparison between Burr and  

Lognormal distributions in CDF of the  

wind speed data. 

 

Figure 2.3: The comparison between Burr and  

Lognormal distributions in CDF of the rainfall data. 
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Figure 3.1: Q-Q plot of Burr and Lognormal  

distributions of the temperature data. 

Figure 3.2: Q-Q plot of Burr and Lognormal  

distributions of the wind speed data. 

 

Figure 3.3: Q-Q plot of Burr and Lognormal distributions of the rainfall data. 

 

 

4. Conclusion 

In this analysis, five continuous probability distributions such as the Beta distribution, Burr distribution, 

Gamma distribution, Lognormal distribution, and Weibull distribution were evaluated and compared on 

three meteorological variables such as temperature, wind speed, and rainfall data for Kuala Krai Station. 

Two goodness-of-fit tests were attempted, which included Kolmogorov-Smirnov, and Anderson-

Darling tests. The Burr distribution suits the weather patterns best, particularly when considering the 

three meteorological variables. The probability distribution of selected weather variables will be used 

to produce random weather information for Kuala Krai. 
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