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Abstract
A new generalization of the skew-t distribution was proposed. The two-parameter lifetime model
called the odd exponentiated skew-t distribution has the ability of fitting skewed, long and heavy
tailed datasets. It is considered to be more flexible than the skew-t distribution as it contains it as a
special case. Some basic properties of the distribution such as the order statistics, entropy, asymptotic
behaviour, moment, incomplete moment, characteristic function and quantile function were derived.
The odd exponentiated skew-t distribution parameter estimates were derived using the maximum
likelihood estimation method and simulation studies performed to evaluate the finite sample
performance of these parameter estimates showed that the parameter estimates were consistent and
approached the arbitrary selected parameter values as the sample size is increased. The application
using a real-life dataset indicated that the new distribution outperformed the other competing
distributions. The hazard rate shape of the odd exponentiated skew-t distribution was found to be

increasing and J-shaped which was also reflected in the application result.

Keywords: Maximum likelihood estimation, Moments, Order statistics, Skew-t distribution, Odd

exponentiated generator.

1. INTRODUCTION

The methods of extending the flexibility of various continuous probability distributions are well-
known in the literature. Hence, significant efforts in developing new families of flexible continuous
probability distributions and extending the efficacy of the existing distributions have been made by
several authors over the years due to inability of the classical distributions to fit various real-life

datasets. The skew-t distribution introduced as an extension of the symmetric t-distribution has been
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used extensively especially in the field of econometric, time series and financial analysis. Numerous
authors have introduced various complex forms of the skew-t which lacked a defined expression for
the density function, example of the forms can be found in Johnson et al. (1995), Azzalini and
Capitanio (2003), Sahu et al. (2003) and Gupta (2002). Several authors have studied possible
extensions and generalizations of the skew-t distribution: Shafiei and Doostparast (2014) proposed a
new generalization of the skew-t distribution of Azzalini and Capitanio (2003) called the Balakrishnan
skew-t (BST) distribution, as a scale mixture of the Balakrishnan normal distribution. The density
function shape of the BST is right-skewed at different degree of freedom which gives it more
flexibility in fitting skewed datasets. Aas and Haff (2006) proposed the generalized hyperbolic skew-t
(GHST) distribution which is considered as a limiting case of the generalized hyperbolic (GH)
distribution. They stated that the generalized hyperbolic skew-t (GHST) distribution can be
represented as a mixing distribution comprising normal variance-mean mixture with the generalized
inverse gaussian distribution. Khamis et al. (2017) proposed the Kumaraswamy skew-t (KwST)
distribution which has the ability of fitting heavy-tailed and skewed datasets than the skew-t
distribution of Azzalini and Capitanio (2014). Basalamah et al. (2018) introduced a new
generalization of the skew-t distribution of Azzalini and Capitanio (2014) called the Beta skew-t
(BST) distribution. The maximum likelihood and L-moments methods were used in demonstrating the
flexibility of the BST distribution in fitting real datasets and the results were in favour of the BST
distribution. These presented extensions with a lot of parameters were based on the complex skew-t

distribution.

The noncomplex one-parameter tractable skew-t distribution introduced by Jones and Faddy (2003)
with defined density and distribution functions was established by introducing a scaling factor into the
two degrees of freedom of the simplest student-t form derived by Jones (2002). The main aim of this
article is to introduce a new hybridized distribution with fewer parameters, with the expectation it
produces a better fit in certain real-world situations and in a wider range of real-life datasets in
engineering, biology, medicine and finance. Additionally, a complete derivation of the statistical
properties of the proposed distribution are provided. The purpose for developing the two-parameter
hybridized distribution is to furnish a more flexible distribution with skewed and unimodal features
that can handle properly skewed and leptokurtic real datasets often found in various fields better than
existing two-parameter distributions. This new distribution in this article can find its potentiality as an
alternative conditional error distribution in GARCH framework when used in volatility modeling. The
rest of the paper is organized as follows. In Section 2, introduce the new distribution called the odd
exponentiated skew-t (OEsr) distribution. In Section 3, statistical properties of the proposed
distribution are derived. In section 4, the maximum likelihood estimation method is applied to derive

the estimates of the model parameters and simulation study performed to assess the performance of
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the OEst parameter estimates. In section 5, a dataset application is illustrated to demonstrate the

superiority of the new distribution while section 6 concludes the study.

2. ODD EXPONENTIATED SKEW-T DISTRIBUTION

Jones (2001) and Jones and Faddy (2003) established a tractable skewed extension of the symmetric
student-t distribution known as the skew student-t (skew-t) distribution. The cumulative distribution
function (CDF) is given as:

GST(y):%{“ \/;ti_yzj y & (=) )

The probability distribution function (PDF) obtained by differentiating (1) is given as
A

. 2
2(2+y?)” @)

Osr (Y) =

where 4 is the skew parameter.

The odd exponentiated family of distributions is a special case established by setting g =1in the

density and distribution functions of the Weibull-G family (Bourguignon et al., 2014). The CDF is
given by

_G(y)

F(y)=41-e 01, ©)

The PDF by differentiating (3) is given as:

G(y)

g (y) e_alfG(y)

[1-G(y)]

f(y)= (4)

where « >0 is the shape parameter, G(y)and g (y) are the baseline distribution CDF and PDF.

A two-parameter model called the odd exponentiated skew-t (OEst) distribution is introduced. The

PDF is obtained by inserting Equations (1) and (2) into Equation (4) expressed as:
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The corresponding CDF by inserting (1) in (3) is given as:

)
F(y;,v)=1-e l[i[lﬁy_yﬂ (6)

From now onward, a random variable Y having PDF (5) is denoted by OE; (v), where v =(a,1) are

set of parameters.

The survival function is defined as s(y)=1-F(y), given a random variable Y. Hence, the survival

function s(y) of OEsr distribution is given as:

2 2

5(y)=e o) ™

The hazard rate function h(y) is given as:

h(y)= )

wrrtes]

To show the efficacy of the OEsr distribution, the graphical structures of the OEsr density function

and distribution function are depicted in Figures 1 and 2 with the skew parameter 4 kept constant and
the shape parameter « varied. Figure 1, indicates that the right tail of the density function gets lighter
and tend to zero as « approach infinity. More so, Figure 2 indicates that the shape of the CDF is
within the limits of zero and one, which justifies that the proposed OEsr distribution is a valid

distribution.
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Figure 2: The OEsr distribution function plots for some selected (o = varied,x =0.5) parameter

values.
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Likewise, the shapes of the hazard rate function depicted in Figure 3, reveal that it can be increasing
and J-shaped.
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Figure 3: The OEsr hazard rate function plots for some selected (o = varied, A =0.5) parameter

values.
3. STATISTICAL PROPERTIES

In this section, some basic statistical properties of the OEsr distribution are derived.

3.1 Quantile Function

The quantile function Q(u)=F (y)'1 for ue(0,1) of the OEsr distribution is given by:
AR —log(1-u) 4
(a—log(1-u))

|

The median Q(0.5) is derived by setting u=0.5in (9). The other quantiles can be derived similarly by

, ue (0,1). 9

setting u=0.25and u=0.75.
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The OEsr quantile function (9) can be used in generating random values from the OEsr distribution.

Q(05)= ue(0,). (10)

The Bowley skewness (Kenney & Keeping,1962) and Moors kurtosis (Moors, 1988) are as follows:
3 1 1
Q[4;¢’:ﬂj—2Q[2;¢7:/1j+Q(4;¢’:/1j
S, =
EREE
4" 4"

K:Q[;;(p,ﬂj—Q(Zwﬁ]—Q(Z’;(p,ﬂjw(é;(Mj 12

Q(S:Mj—@(;;w]

where Q(.) represent the quantile function. Using the OEsr quantile function (9), the numeric values of

(11)

the median (M), 25" and 75" percentiles, interquartile range (IQR), kurtosis (Ks), and skewness (Sk)
for some chosen parameter values are provided in Table 1. It is clear from Table 1, as the values of 2
increases at specific values of «, the skewness and kurtosis remain constant. More S0, across
different values of «, the skewness and kurtosis decreases indicating negative properties,

respectively.

Table 1: Descriptive statistics of the OEsr distribution.

a A Ks Sk M 25t 75t IQR
0.2 0.3 -0.0511 -0.0161 0.3627 0.1001 0.6170 0.5169
05 -0.0511 -0.0161 0.4683 0.1292 0.7965 0.6673
0.9 -0.0511 -0.0161 0.6283 0.1734 1.0687 0.8953
1.2 -0.0511 -0.0161 0.7254 0.2002 1.2340 1.0338
15 -0.0511 -0.0161 0.8111 0.2238 1.3796 1.1558
0.4 0.3 -0.1616 -0.0725 0.1525 -0.0907 0.3627 0.4534
0.5 -0.1616 -0.0725 0.1968 -0.1171 0.4683 0.5853
0.9 -0.1616 -0.0725 0.2641 -0.1571 0.6283 0.7853
12 -0.1616 -0.0725 0.3049 -0.1813 0.7254 0.9068
15 -0.1616 -0.0725 0.3409 -0.2028 0.8111 1.0138
0.6 0.3 -0.2291 -0.1106 0.0396 -0.2059 0.2361 0.4420
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0.5 -0.2291 -0.1106 0.0511 -0.2658 0.3048 0.5706
0.9 -0.2291 -0.1106 0.0685 -0.3658 0.4089 0.7655
1.2 -0.2291 -0.1106 0.0791 -0.4117 0.4722 0.8840
15 -0.2291 -0.1106 0.0884 -0.4603 0.5280 0.9883
0.7 0.3 -0.2539 -0.1253 -0.0027 -0.2516 0.1908 0.4424
0.5 -0.2539 -0.1253 -0.0035 -0.3248 0.2463 0.5712
0.9 -0.2539 -0.1253 -0.0047 -0.4358 0.3305 0.7663
1.2 -0.2539 -0.1253 -0.0054 -0.5032 0.3816 0.8848
15 -0.2539 -0.1253 -0.0060 -0.5626 0.4266 0.9892
1.5 0.3 -0.3599 -0.1935 -0.2167 -0.5054 -0.0216 0.4838

0.5 -0.3599 -0.1935 -0.2797 -0.6525 -0.0279 0.6246
0.9 -0.3599 -0.1935 -0.3753 -0.8754 -0.0374 0.8380
1.2 -0.3599 -0.1935 -0.4334 -1.0108 -0.0432 0.9676
15 -0.3599 -0.1935 -0.4846 -1.1301 -0.0483 1.0818

3.2 Asymptotic Behaviour

The limits of the OEsr density function (PDF) are given by:

fim 1)< fim () =0

Proof:

For y — -, we have

)
1 31— Y
lim £ (x)= lim ot _e [[ WH (13)
2(4+y?)” {1 [;{u L m
A+y
It is obvious that lim [;3/2] =0.
o 2(4+ %)
Therefore, lim f(x)=0 (14)

y—>—©

Similarly, for y — 40, we have
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It is obvious that lim | ————|=0.

el 2(2+x7)
Therefore, lim f(x)=0 (16)

y—>+o

The results of the asymptotic behaviour infer that the OEsr mode is unique.
3.3 Mixture Representations

The series expansion of the OEsrt distribution is derived for the density and cumulative functions. This
mixture representation is important to derive several statistical properties of this distribution in full

generality. If |s|<1 and Kk a positive real non-integer, the generalized binomial theorem

representation is given by:

oo =3y (e an
j=0

The expanded form of the PDF, applying the series expansion in Equation (17) in (5) leads to:

i (i+1)
% ()" a' (—(i+2) A 1,
f(y)= i;:o—i! ( i j{Z(}H—yz)lez(l ,—/1+y2]] (18)

The preceding equation reveals that the PDF expression is likely an infinite linear combination of the

skew-t density functions. Thus, we can obtain the statistical properties of the OEsr distribution from
the properties of the skew-t distribution. Also, another expanded form of the PDF is given by

m+3]

) =W himY" (l+y2)7[ 2
wherew, . =ad— > 'M(—(gz)}(njj(k]p)
e 2" e i i | I lm

The expanded form of the CDF of the OEsr distribution by applying series expansion to Equation (6),

(19)

is given by

q

F(y):l//i‘j‘k,l,m,qxq (/1+y2)7 (20)
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3.4 Moments

Let Y ~ OEg; (@, 1) be arandom variable, then the g moment of Y is given by

m+3
’

Hy = j: YW iim Y (/1+ y: )7[7] dy 1)

Taboga (2017, p.413, s.50.1.5) showed that (21) can be rewritten as:

m+3

Hy = (1+(_1)9 )w YO (A yz)’(T) dy (22)
After some algebra, using the Beta function expression B(6,7)=["y"*(1+y) " dy. The r'" moment

is given by

2 T) g =even (23)
0 g =odd

where w, . = ol 2|1+1 .i i(_l)u_j?w o [_(iﬂ)}(ir JJ(T)( I )

] m

The incomplete moment of the OEsr distribution is derived. Let Y ~ OE; («, 1) be a random variable,

the g™ incomplete moment for any t > 0is given by

m+3

@ (t)= _[; YW im Y (/14‘ yz)_(T) dy (24)

After some algebra, using the Beta function expression B(z,e,y)=jozy9*1(1—y)”“’1dy. The r

incomplete moment is given by

-2
o, (t) =Wi,,-,k,|,mﬂng[t, g +21+1,2_ng (25)
C1E ST e (i) DK
where w, ;. =al o i,,—%::ogj—i! j | -

Remark: The first incomplete moment gol'(t):j; yf (y)dy of OEsr distribution can be obtained by

inserting g =1 in (25).
3.5 Characteristics Function

The characteristics function of a random variable Y is a function ¢, (t) defined as:
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Px (t):E(e"X)=i(it)g Hy (26)

Inserting Equation (23) into Equation (26), the characteristics function of the odd exponentiated skew-

t (OEsry) distribution is given as:

. 92 12_
= (it) lw 22Bg+m+, gj _
o, (t)zz(g)' Wi jktm ( > > g =even n
e 0 g = odd
L& L) ((ie2))(i+ )k !
h =
where \N|,J,k,|.m al 2|+1 ingzong) il J | | m

3.6 Order Statistics

Let V,,Y,,...,Y, be a random sample from a continuous distribution and Y, <Y, <...<Y,, are the order

statistics obtained from the sample. The r'" order statistic Y, is defined as

R e DX S A IRt 29

1=0

Inserting Equations (5) and (6) in Equation (28), applying series expansion. The r'" order statistics for

OEsr distribution is given as

frin(y):m‘%,i,j,k,g,h,mym (ﬂ+ y2 )_[7j (29)

where g, :%aﬂi’jg%0%(—1)i+j+k+l+g:(a(i+1))j (p+i|-1](—(jk+2)](n; p][J;k)(ﬁJ(:\)

Remark: The minimum and maximum order statistics is derived by setting r=1 and r=n in
Equation (29).

3.7 Entropies

The variation of uncertainty in a random variable is normally measured by the entropy (Rényi, 1961).

The Rényi entropy Io.s) 1S expressed as:
l +0 S
IR((S) = ﬁIOQ _[_ f (y) dy , >0 and §=1 (30)

Using the PDF mixture representation of OEsr distribution in (19), f (y)(3 is given as:
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P =W,y (2+72) (31)

where w, . :(;Lj”%O;M[—G:z@j(i;j][ﬂ(”

Hence, the Rényi entropy of the OEsr distribution using the expression by Taboga (2017, p.413,
5.50.1.5), is expressed as:

I = % log ((1+ (_1)g )Wi‘j‘k.l,m_[:c y" (ﬂ +y? )7(m+3%) dYJ (32)

Using the expression of the Beta function B(6,y)= J‘Om y**(1+y) "7 dy. The Rényi entropy of the

OEsr distribution is given as:

m+1 35-1
/IZB —_— =
1 log Wi kim ( > 2 j g =even

0 g =odd

(33)

Likewise, the g-entropy (Tsallis, 1988) is defined as:

Hq:qTIOg( J f(y) dy) q>0and g=0 (34)

Using the PDF mixture representation of OEsr distribution in (19), f (y)q is given as:

Fy) =y (2y2) ) (35)

w5 5 S

i, k1=0m=0 i! J

Hence, the g-entropy of the OEsr distribution is given as:

U fmal 3q -1
2B =
A ( > 7 j g =even (36)

H :illog 1| { Meiteam
4= 0 g =odd

q

4 MODEL ESTIMATION
41 Parameters Estimation

Let V,.Y,,....Y, be a random sample from the OEst distribution with unknown parameter vector

v=(ea,2)" . The likelihood (L) of the OEsr distribution is expressed as:
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L(o)=T1 ot  ws) (37

E 2(2+y?)" [1_[;[“ \/ﬁ_yzmz

The log-likelihood function (LL) is given as:

E1+ y
n n 2 ﬂ+y2
LL:IogL(u):nIoga+nlogl—nlog2—3/22I09(1+yz)—a
i=1 i=1 l X
1- =1+ 38
[2[ 4+y2]] e
n 1 y
2> log|1-=|1+
2 g[ 2{ i+y2B

Taking the partial derivative of the log-likelihood 1, with respect to « and 4 equating to zero, the

normal equations are obtained as follows:

o )

—- (39)
oa o = 1 X
1- =1+
2 Ja+y?
oLL n 3¢ 1 . y N . y _0 (40)

R T N Ve R TR Gty

The non-linear equations (38) and (39) are solved numerically via iterative methods using statistical

software such as R, MATLAB and Maple. The maximum likelihood estimates (MLES) are asymptotic

normally distributed i.e., V(& -a,4-4) follow N, (0,%), where = is the variance-covariance matrix

obtained by inverting the observed Fisher information (F) given as follows:

o
0o dadld

1o A
dadl 947

For each parameter of OEsr distribution, the asymptotic (1-7)100% confidence intervals are

estimated with
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where, upper " percentile of the standard normal distribution is Z._.

4.2 Simulations Study

The simulation study for the average MLEs, absolute bias, variance, Mean Square Errors (MSE), and
Root Mean Square Errors (RMSE) are performed for the OEsr distribution. For N =10000, random

numbers of sample size n=230,50,150,300,1000 are generated using the OEsrt quantile function as in

equation (9). The absolute bias, MSE and RMSE are computed for S = (a;t) using
AbsBias, :‘ii(sii —s)‘, MSE, =ii(§i -s), RMSE, = ii(s‘i -s)
N < N < N &

The simulation results for the average MLES, absolute bias, variance, MSEs, and RMSEs for different
combinations of the parameters « and A are given in Table 2. These estimates are sensibly
consistent and approach the parameter values as the sample size increases. The absolute bias,
variance, RMSEs, and MSEs decrease for all parameter mixtures as the sample size increases which
implies that the OEsr parameter estimates are very much consistent, better estimated and approaches

the arbitrary selected parameter values as the sample size increases.

Table 2: Simulation results

(@=12,2=07)
n Par AE ABS Var MSE RMSE
30 a 1.241 0.041 0.064 0.066 0.256
0.687 0.013 0.061 0.061 0.248
50 a 1222 0.022 0.035 0.035 0.187
0.691 0.009 0.037 0.037 0.193
150 a 1.206 0.006 0.101 0.011 0.103
2 0.696 0.004 0.012 0.012 0.110
300 a 1.203 0.003 0.005 0.005 0.072
A 0.698 0.002 0.006 0.006 0.077
1000 a 1.201 0.000 0.001 0.001 0.039
0.700 0.000 0.002 0.002 0.042
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(2 =15,1=10)
n Par AE ABS Var MSE RMSE
30 a 1.570 0.070 0.105 0.110 0.332
0.978 0.022 0.130 0.131 0.362
50 o 1.539 0.039 0.055 0.056 0.237
0.985 0.015 0.079 0.079 0.281
150 o 1.510 0.101 0.016 0.016 0.127
A 0.994 0.006 0.025 0.025 0.160
300 a 1.506 0.006 0.008 0.008 0.088
A 0.997 0.003 0.012 0.012 0.112
1000 a 1.501 0.001 0.002 0.002 0.048
0.999 0.001 0.004 0.004 0.061

(@=17,1=12)
n Par AE ABS Var MSE RMSE
30 a 1.795 0.095 0.147 0.156 0.395
2 1.170 0.030 0.195 0.195 0.442
50 a 1.752 0.052 0.074 0.077 0.277
1.180 0.020 0.118 0.118 0.344
150 a 1714 0.014 0.021 0.021 0.146
1192 0.007 0.038 0.038 0.195
300 a 1.708 0.008 0.010 0.010 0.100
1.196 0.004 0.019 0.019 0.136
1000 a 1.702 0.002 0.003 0.003 0.055
1.199 0.001 0.005 0.005 0.074
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(a=20,2=15)

n Par AE ABS Var MSE RMSE
30 a 2.141 0.141 0.244 0.264 0.514
1.457 0.043 0.324 0.326 0571

50 a 2.078 0.078 0.115 0.121 0.348
1471 0.029 0.195 0.196 0.443

150 a 2.022 0.022 0.031 0.031 0.177
2 1.489 0.010 0.063 0.063 0.251

300 a 2.011 0.011 0.014 0.015 0.121
A 1.495 0.005 0.031 0.031 0.176

1000 o 2.003 0.003 0.004 0.004 0.066
1.499 0.001 0.009 0.009 0.095

5 APPLICATION

In this section, the flexibility and superiority of the odd exponentiated skew-t (OEsr) distribution over
other two-parameter distributions are demonstrated using a real dataset. The odd exponentiated skew-t
(OEsr) distribution is compared with other competitive distributions such as the type-I half logistic
skew-t (TIHLST), half logistic skew-t (HLST), Fréchet (FT), Pareto (PE), Lomax (LOMX), inverse
Pareto (INVPE), type-1 half logistic Burr X (TIHLBX) and skew Student-t (ST). The descriptive
statistics of the dataset are provided in Table 3.

The dataset represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle
bacilli. The dataset is given as follows:

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08,
1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53,
1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3,
2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02,
4.32, 4.58, 5.55. This dataset has previously been used by Jamal et al. (2019), Umar et al. (2019),
Leren and Abdullahi (2020) and Ampadu and Anafo (2019).

Table 3: Descriptive statistics of the dataset.

Median | SD
1.595 1.011

Kurtosis
5.046

Skewness
1.294

n Mean
Dataset 12 1.791

The performance measures are applied using the R-software package “AdequacyModel” to evaluate

the fit of the distributions specified above. The distribution parameters are estimated using the
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maximum likelihood estimation procedure. The following performance measures: Hannan-Quinn
information criterion (HQIC), Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), Anderson Darling (AD), Cramer-von Mises (CVM), Kolmogorov-Smirnov (K-S) statistic and
its p-value are provided in Table 4. The distribution is of a good fit if all the performance measures
are smaller and the p-value is larger. Lastly, Table 5 presents the 95% and 99% confidence intervals

for the OEsr distribution parameters.

Table 4: MLEs (SE) and performance measures.

Model | Par| MLEs (SEs) AIC BIC |HQIC|CVM | AD | K-S b
value
& | 0.0054(0.0022)
OEst _ 206.52 | 211.18 | 208.28 | 0.054 | 0.278 | 0.085 | 0.645
A | 0.0919(0.0397)
& | 0.6579(0.0889) 1.2e-
TIHLST | — 288.94 | 293.60 | 290.81 | 0.064 | 0.366 | 0.374
1 | 1.5812(0.5509) 09
. 3.8e-
HLST | 1 | 3.5701(0.7450) | 297.13 | 299.46 | 298.06 | 0.099 | 0.579 | 0.456 y
& | 1.1771(0.0819)
FT _ 255.59 | 260.25 | 257.45 | 0.575 | 3.659 | 0.192 | 0.001
1 | 1.0846(0.1125)
& | 47.126(44.788)
= 3.3e-
PE 0 | 84.038(81.125) | 24571 | 250.38 | 247.58 | 0.078 | 0.524 | 0.296 06
B | 93.3635(73.8610)
a | 40.0722(51.3010) 2.3e-
LOMX — 245,92 | 250.58 | 247.78 | 0.078 | 0.522 | 0.300
A | 0.0142(0.0183) 06
& | 13.0025(11.3630) 8.6e-
INVPE |— 258.46 | 263.12 | 260.32 | 0.320 | 2.160 | 0.257
A | 0.0980(0.0914) 05
& | -0.0788(0.0859)
TIHLBX | 6 | 0.7835(0.0762) | 209.059 | 216.05 | 211.85 | 0.164 | 1.030 | 0.104 | 0.377
1 | 25.8169(45.9911)
yi 2.2e-
ST 5.7271(1.2579) | 346.19 | 348.52 | 347.12 | 0.117 | 0.698 | 0.578 6
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Figure 4: Fitted density function plot (top left panel), distribution function plot (top right panel),
probability-probability (PP) plot (bottom left panel) and quantile-quantile (QQ) plot (bottom right
panel) of the OEsr distribution.
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Figure 5: The Box plot (top left panel), total time of test (TTT) plot (top right panel), OEst hazard

rate function plot (bottom left panel) and OEsr survival function plot (bottom right panel).

From the results in Table 4, the performance measures of the OEsr distribution are smaller when
compared to other fitted distributions, so we infer that the OEsr distribution provides a good fit than
the other distributions. The flexibility and fitness of the OEsr distribution is visible from Figure 4. It is
clear that OEsr distribution provides an appropriate fit for the dataset based on the density function,
distribution function, P-P plot and Q-Q plot in Figure 4. The TTT (total time on test) plot in Figure 5,
shows that the dataset exhibits an increasing failure rate function and OEsr is capable of
accommaodating increasing failure rates. Likewise, the Box plot of the dataset is shown in Figures 5.
Furthermore, the hazard rate and survival plots of the OEsr distribution, using the parameter
estimates in Table 4 are also depicted in Figure 5. The hazard rate shape based on the OEsrt parameter
estimates is increasing and J-shaped. The J-shaped means that the OEsr distribution tend to have some
observations at one end, very few in the middle and a large number of observations at the other end
which gives it the capability of handling skewed and heavy tail datasets. The results in Table 5, shows

that the parameter estimates fall within the 95% and 99% confidence intervals.

Table 5. OEsy distribution parameter estimates confidence intervals

Cl a A
95% [0.00109 0.00971] [0.01409 0.16971]
99% [—0.00025 0.01105] [—0.01013 0.19393]

6 CONCLUSION

This article presents a new two-parameter distribution known as the odd exponentiated skew-t (OEsr)
distribution using the odd exponentiated transformation. The flexibility of the skew-t distribution is
improved using this transformation. This mixture representation is important to derive several
structural properties of this distribution in full generality. Some of them are provided such as the
ordinary and incomplete moments, quantile function, entropy, characteristic function and order
statistics. The new distribution parameter estimates are derived using the maximum likelihood
estimation (MLE) procedure and simulation study showed that the MLE performed well in estimating
the parameters of the new distribution. The application using a real dataset indicates that the OEsr
distribution outperformed the other competing distributions. Future research study will compare the
performance of the OEsy error conditional distribution to existing error conditional distributions such
as the normal distribution, Student-t distribution, generalized error distribution, and its skew variants

in modeling and forecasting volatility using GARCH framework.
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