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Abstract 

Groundwater is the water present beneath the earth’s surface in soil pore spaces and the fractures of rock 

formations. Establishing a probability distribution that provides a good fit to groundwater quality has 

recently become a topic of interest in the fields of hydrology, meteorology among others. In this paper, 

three groundwater datasets including calcium, magnesium, and chloride are fitted to the normal, lognormal, 

gamma, Weibull, logistic, and log-logistic distributions to select the best groundwater model. The measures 

of goodness of fits such as the Akaike information criterion (AIC), Bayesian information criterion (BIC), 

and log-likelihood are computed to compare the fitted models. The results show that the gamma distribution 

gives better fits for calcium and magnesium datasets while the lognormal distribution provides a better fit 

for the chloride dataset than other competing models.  This research describes an application of probability 

distributions and the best-fitted distribution to a practical problem involving groundwater data analysis. By 

assuming the distribution of data, analysts can utilize the characteristics of the distribution to make 

predictions on outcomes. 

Keywords: Gamma Distribution, Groundwater Quality Data, Lognormal Distribution, Maximum 

Likelihood, Probability Distribution 

 

1. Introduction  

Groundwater is one of the abundant and reliable sources of drinking water found in natural environments 

and is vulnerable to deterioration caused by domestic, industrial, and agricultural activities (Suleiman et al., 

2020a). The deterioration in the quality of drinking water has a negative health effect for humans, plants, 

and animals; which may introduce water-borne diseases such as kidney disease, gastroenteritis, maternal 

and infant mortality, cholera, hypertension, prostate, and colorectal cancer, miscarriage, birth defects in 
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children typhoid fever and giardiasis (Arabi et al., 2013; Taiwo et al., 2015; Chang et al., 2018). The World 

Health Organization (WHO) reported that groundwater contamination is responsible for 1.7 million infant 

deaths annually (WHO, 2017). Hence, sustainable management of available water resources becomes a 

periodic need in arid and semi-arid regions.  

In developing countries, rapid population growth coupled with the rate of urbanization and economic 

development tends to impair the groundwater resources and result in high variability for many water quality 

parameters. The possible variability may be due to anthropogenic activity and natural variance during 

different seasons through biochemical or chemical processes (Mustapha et al., 2014). In the last decades, 

there has been a gradual deterioration in the quality of purity observed in groundwater because of so many 

human activities such as the rapid population growth, agricultural activities, urbanization, and 

industrialization, which has exposed groundwater resource to the risk of contamination (Adewoyin et al., 

2019). Today urban regions in Nigeria exhibit a high level of dependence on groundwater for urban water-

supply, notably for innumerable domestic and industrial activities (Tukur et al., 2018), and the situation has 

resulted in further pollution of groundwater sources (Emenike et al., 2019). Various treatment processes 

exit to reduce drinking water pollution, such as managed aquifer recharge, activated carbon treatment, 

ozonation and so on (Kiefer et al., 2020). 

In recent times, few methods such as the projection pursuit technique, neural networks, chemical 

analysis, and water quality index have been considered as the most reliable way to obtain information about 

the quality of water (Salman and Ruka’h 1999; Sadat-Noori et al., 2014). Also, several statistical methods 

such as multivariate statistical techniques, analysis of variance and frequency analysis have been used to 

monitor the quality of drinking water (Maryam et al., 2018;  Gulgundi and Shetty 2018; El Baghdadi et al., 

2019;  Garba et al., 2017; Mustapha, 2014). Mathematical models are often used as decision support tools 

to evaluate contamination in groundwater (Cecilia et al., 2020).  

Furthermore, the probability distribution model is one of the recent statistical tools applied in 

hydrology for water estimation and prediction. This arises from experiments where the outcome cannot be 

predicted with certainty (Patel and Shete 2012). Groundwater variables are subject to the uncertainty that 

is assumed to have a particular probability distribution model.   The probability distribution model helps to 

analyze and interpret spatial and temporal variations of hydro-morphological as well as physical and 

chemical parameters of groundwater easily and can serve as a reference model for future investigations 

(Kishore et al., 2011). Commonly used probability distributions known as normal, lognormal, gamma, 

Weibull, and log-logistic distributions have been applied to the analysis of rainfall and surface water 

datasets (Nwaiwu et al., 2005; Maryam et al., 2018; Karim and Hossein 2019). Recently, several 

probabilistic risk assessment models were to evaluate groundwater quality (Roshni et al., 2020; Opoku et 

al., 2020; Suleiman et al., 2020a). 
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The previous studies mainly focused on applications of probability distribution models for predicting 

annual rainfall and estimating the probable return period of the rainfall datasets. However, these studies did 

not account for relative probability distributions that will likely provide better statistical estimation for the 

dataset. Hence, this paper aims to determine suitable probability distribution models for calcium, 

magnesium and chloride ions collected from Gwale local government area, northwestern Nigeria. High or 

low intake of these variables can lead to irregular heartbeat, cardiovascular disease, anxiety, insomnia, 

nervousness, weakness, muscle/joint pain, osteoporosis, epilepsy, high stomach acid, asthma, high blood 

pressure, PMS, anxiety, sweating, muscle spasms/cramps, dysmenorrhea, angina, constipation, 

migraine/headaches, cardiovascular disease, arrhythmia, cardiac arrest, coma, muscle spasms, joint/spinal 

degeneration, bone loss, low stomach acid, low body temperature, low blood pressure, increased risk of 

multiple cancers, bowel / genitourinary bleeding, dry skin, fatigue, depression, vomiting, diarrhea (Arabi 

et al., 2013). The AIC, BIC, and log-likelihood statistics are used to ascertain the best-fit probability models 

for collected groundwater quality datasets. The determined models could serve as efficient models for 

monitoring groundwater quality especially in predicting the quality characteristics of water parameters for 

future investigations. 

 

2. Materials and methods 

2.1.  Study area 

Kano has been known as the most populous city in Nigeria and the largest administrative state in the 

northern region of Nigeria (World Bank Group, 2016). Kano metropolis covers an area of 600km2 situated 

in the northwestern part of Nigeria, located between latitude 10˚ and 12˚N   and longitude 8˚ and 9˚E   

(Amoo et al., 2018; Suleiman et al., 2020b). Politically Gwale Local Government Area falls under 8 

metropolitan local government areas, boarded with Dala to the North, Kumbotso to the South, Kano 

Municipal to the East, and Ungogo to the West. Gwale has many industries situated heavily at Sharada 

Phase III. The study area map is shown in Fig. 1. 

The present climate of Kano is the tropical wet and dry type with a dry season between 4 – 5 months 

and wet season May and September (Dan Azumi and Bichi, 2010; Suleiman et al., 2020b). There are two 

major geological structures in the Kano region, with minor intrusion as the third. The larger are of the south 

and north. West is indentation by rocks of basement complex with the intrusion of younger granite in the 

extreme southern parts. To the north-west area are the unconsolidated sediments of the Chad republic. These 

two structures are separated by a transitional zone which constitutes the well define hydro-geological divide 

of the region. Two hydrological can be identified in the region. The rivers are located in the upland areas, 

which comprise river Kano and river Challawa. The area received rainfall of over 800mm annually. The 
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temperature varies by warm to hot seasons between November and February. Annual mean temperature 

ranges from about 21 degrees Celsius to 27 degrees Celsius (Bala et al., 2011; Suleiman et al., 2020a). 

 
Figure 1. The map of Gwale area showing sampling locations 

 

2.2.  Sample selection 

Groundwater data were collected from 28 locations in Gwale area, northwestern Nigeria in August 2018. 

The area has a population of 362059 at the 2006 census. The locations were randomly selected using simple 

random sampling to ensure an equal chance of representativeness. The latitude and longitude of the chosen 

locations were determined on a map using a geographical position system. The groundwater samples were 

obtained from hand pumps and open wells which were stored in iced plastic containers before taken to the 

laboratory according to the standard method (Standard Methods, 2005). In this research, the chosen water 

parameters are calcium, magnesium, and chloride ions. The concentrations of these ions expressed in 

milligram per liter were analyzed in the federal ministry of water resources laboratory, Kano state, Nigeria.  

 

2.3.  Probability distribution function (pdf) of groundwater samples 

Any experiments whose outcomes cannot be exactly predicted with certainty are termed as uncertain. An 

event like water quality concentration is uncertain (Loucks and Van 2017), which can be adequately 

predicted by developing suitable probability distribution models. For predictive purposes, it is important to 

determine the appropriate probability distribution of the underlying distribution of data by understanding 

its parameters (Chaibandita and Konyaib 2012). The parameters of the individual distribution such as 

location, shape, and scale are necessary to describe the distribution. These parameters will also allow the 

distribution to provide flexibility and effectiveness in modeling situations   (Surendran and Tota-Mahara 
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2015). The location parameter simply shifts the graph to left or right on the horizontal axis. The scale 

parameter allows distribution to take on a variety of shapes depending on the value of the shape parameter. 

The scale parameter also describes the stretching capacity of the probability distribution. In general, a 

change in the location parameter will shift the distribution; a change in the scale parameter will stretch or 

shrink the distribution. The probability distributions used in this paper are briefly defined in the following 

equations: 

 

2.3.1. Normal distribution 

The pdf of the normal distribution is defined by: 
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where x is the groundwater data ranging from −∞  and +∞ , µ  is the mean value and σ  is the standard 

deviation. 

 

2.3.2. Lognormal distribution 

A random variable x is said to have a lognormal distribution with two parameters µ  and σ if its pdf is given 

by: 
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where x is the groundwater data ranging from 0 and +∞ , the parameters µ  and σ  are the mean and 

standard deviation of the distribution respectively.  

 

2.3.3. Gamma distribution 

The pdf of this distribution is given by: 
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where x is the groundwater data ranging from 0 and +∞ , ϕ  is the scale parameter and α  is the shape 

parameter. 
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2.3.4. Weibull distribution 

Weibull distribution has its probability distribution function expressed by: 
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where x is the groundwater data ranging from 0 and +∞ , α  is the shape parameter and β  is the scale 

parameter. 

 

2.3.5. Logistic distribution 

A random variable x has the logistic distribution with two parameters µ  and λ  if its pdf is given by  
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where µ  and λ  are the location and scale parameters of the logistic distribution respectively. 

 

2.3.6. Log-logistic distribution 

A random variable x is said to follow a log-logistic distribution with two parameters α  and β  if its 

probability distribution function is given by:          
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where α  and β  are the scale and shape parameters of the log-logistic distribution respectively. 

 

2.4.  The goodness-of-fit  

This is a method of choosing one from among a set of competing models. There are several approaches to 

determine the optimal model for a given dataset. Some of these approaches are AIC, BIC, and Log-

likelihood. These approaches are used to assess the relative quality of the various statistical models, and 

details can be found in (Sasireka et al., 2019; Laio et al., 2009). 

For independent samples, the maximum likelihood estimates is given by: 

( ) ( ) ( )1 1
1

; ,..., ,..., | |
n

n n i
i

L x x f x x f xθ θ θ
=

= =∏                                     (7) 

The logarithm of the likelihood function is usually used as the estimator. The unknown parameters, 

denoted by the vector θ  in the above equation, are calculated by maximizing the log-likelihood function. 
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The AIC is obtained as: 

( )2log 2AIC L k= − +                                      (9) 

where k is the number of model parameters and ( )log L  is the log-likelihood function for the statistical 

model. The BIC is expressed as: 

   ( ) ( )log 2logBIC n k L= −              (10) 

where n is the data sample size. To select the best model, three statistical approaches namely, the AIC, BIC, 

and log-likelihood are used to assess how well the chosen models fit the groundwater datasets. In general, 

it can be selected as the best model the one which has the smaller values of the AIC, BIC statistics, and the 

larger values of the log-likelihood (Gündüz and Korkmaz 2020). Also, histogram plots are given to support 

the numerical results. The probability models of this study could serve as efficient models for monitoring 

groundwater quality especially in predicting the quality characteristics of water parameters for future 

investigations. It should be noticed that all results in this work have been obtained under the maximum 

likelihood estimation method and all computations are carried out using R software. 

 

3. Results and discussion 

A total of six probability models such as normal, lognormal, gamma, Weibull, logistic and log-logistic 

models are used to fit groundwater datasets (calcium, magnesium, and chloride).  

The maximum likelihood estimates (MLEs) and their corresponding standard errors (in parentheses) 

of the model parameters, and the AIC, BIC, and log-likelihood values for the calcium, magnesium, and 

chloride datasets obtained for normal, lognormal, gamma, Weibull, logistic and log-logistic models are 

reported in Table 1, 2 and 3, respectively. The results in Table 1 show that only the gamma distribution 

gives an adequate fit while the normal, lognormal, Weibull, logistic and log-logistic distributions do not 

give an adequate fit for the calcium dataset. Also, it is evident from Table 2 that the fitted gamma model 

corresponds to the lowest values of the AIC and BIC, and the largest value of the log-likelihood (for 

magnesium dataset) among the fitted normal, lognormal, Weibull, logistic and log-logistic models. 

Therefore, the gamma model can be chosen as the best model for the magnesium dataset. For the chloride 

dataset in Table 3, the lognormal model provides the best fit. 

The histogram plots of calcium, magnesium, and chloride datasets and the estimated probability 

distribution functions of the competitive models are displayed in Fig. 2, 3, and 4, respectively. It is clear 

from Tables 1, 2, and 3, and Fig. 2, 3, and 4 that the gamma and lognormal models provide better fits to 

these three groundwater datasets.  
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Table 1. The MLEs and their standard errors (in parentheses), and the statistics AIC, BIC, and log-

likelihood for the calcium dataset 

Models MLEs (shape) MLEs  (scale) AIC BIC Log-likelihood 

Normal 
 = 81.52143σ  

(8.06561) 

µ =42.67921 

(5.70325) 
293.6684 296.3328 -144.8342 

Lognormal 
σ =4.25626 

(0.10491) 

µ =0.55515 

(0.07418) 
288.8543 291.5187 -142.4272 

Gamma 
ϕ =3.61686 

(0.92360) 

α =0.04437 

(0.01215) 288.3897 291.0542 -142.1949 

Weibull 
2.04221 

(0.29738) 

92.44501 

(9.05035) 289.2745 291.9389 -142.6372 

Logistic 
σ =77.61928 

(8.24623) 

µ =24.73370 

(3.85030) 
294.6912 297.3556 -145.3456 

Log-logistic 
β =3.06445 

(0.47193) 

α =71.38920 

(7.79406) 
290.2434 292.9078 -143.1217 

 

Table 2. The MLEs and their standard errors (in parentheses), and the statistics AIC, BIC, and log-

likelihood for the magnesium dataset 

Model MLEs (scale) MLEs (shape) AIC BIC Log-likelihood 

Normal 
12.35463 

(1.22189) 

6.46565 

(0.86401) 187.9847 190.6491 -91.99237 

Lognormal 
2.36956 

(0.10486) 

0.55488 

(0.07415) 183.1712 185.8356 -89.58562 

Gamma 
3.61952 

(0.92619) 

0.29291 

(0.08040) 182.7085 185.3729 -89.35426 

Weibull 
2.04323 

(0.29751) 

14.00982 

(1.37086) 183.5949 186.2593 -89.79743 

Logistic 
11.76578 

(1.24948) 

3.74785 

(0.58355) 189.0055 191.6699 -92.50275 

Log-logistic 
3.06501 

(0.47198) 

10.81724 

(1.18063) 
184.5632 187.2276 -90.28162 
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Table 3. The MLEs and their standard errors (in parentheses), and the statistics AIC, BIC and log-

likelihood for the chloride dataset 

Model MLEs (scale) MLEs (shape) AIC BIC Log-likelihood 

Normal 
134.28571 

(14.84198) 

78.58928 

(10.50194) 327.8577 330.5221 -161.9289 

Lognormal 
4.72487 

(0.11309) 

0.59844 

(0.07997) 
319.3008 

 

321.9652 

 

-157.6504 

 

Gamma 
3.01163 

(0.26845) 

0.02242 

(0.00614) 320.2588 322.9232 -158.1294 

Weibull 
1.82960 

(0.26845) 

152.17260 

(16.65456) 321.4998 324.1642 -158.7499 

Logistic 

 

125.74447 

(15.70753) 

46.64032 

(7.24190) 
329.7430 332.4074 -162.8715 

Log-logistic 
2.738051 

(0.41545) 

111.36334 

(13.79706) 
321.9131 324.5775 -158.9566 

 

 
Figure 1: Plots of the fitted distributions for calcium dataset 
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Figure 2: Plots of the fitted distributions for magnesium dataset 

 

 
Figure 3: Plots of the fitted distributions for chloride dataset 

 
4. Conclusions 

There has been an increased interest in monitoring groundwater quality based on statistical techniques.  The 

applications of probability distributions in modeling hydrological data have attracted the attention of several 

researchers to monitor the probabilistic behavior in water datasets. In this paper, three groundwater datasets 

such as calcium, magnesium, and chloride were fitted to the normal, lognormal, gamma, Weibull, logistic 

and log-logistic distributions to select the best groundwater model. The AIC, BIC, and log-likelihood 

statistics are used to ascertain the best-fit probability models for collected groundwater quality datasets. 

The results show that the gamma distribution gives better fits for calcium and magnesium datasets and 

lognormal distribution provides a better fit for the chloride dataset than other competing models.  This 

research describes an application of probability distributions and the best-fitted distribution to a practical 
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problem involving groundwater data analysis. By assuming the distribution of data, analysts can utilize the 

characteristics of the distribution to make predictions on groundwater variables.   
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