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Abstract 

Two parameters Maxwell – Exponential distribution was proposed using the Maxwell generalized 

family of distribution. The probability density function, cumulative distribution function, survival 

function, hazard function, quantile function, and statistical properties of the proposed distribution are 

discussed. The parameters of the proposed distribution have been estimated using the maximum 

likelihood estimation method. The potentiality of the estimators was shown using a simulation study. 

The overall assessment of the performance of Maxwell - Exponential distribution was determined by 

using two real-life datasets. Our findings reveal that the Maxwell – Exponential distribution is more 

flexible compared to other competing distributions as it has the least value of information criteria. 

Keywords: Maxwell – Exponential, Maxwell generalized family, maximum likelihood estimator and 

Quantile function. 

 

1. Introduction  

The real lifetime datasets are so enormous to the extent that the existence lifetime distributions that are 

used in modeling lifetime datasets are not enough to handle all the present data (Suleiman et al., 2020). 

These prompt scientists from all fields working tirelessly to proposed new distributions that will be used 

in modeling present and past datasets, by improving the flexibility of the new distributions that were 

derived from an existing family of distributions. 

There are various approaches used in proposing lifetime distributions as studied by many 

researchers (Alzaatreh et al., 2013; Bourguignon et al., 2014). Several researchers used these methods 

to propose new distribution such as (Yousof et al., 2016; Alizadeh et al., 2017; Cordeiro et al., 2017; 

Gomes et al., 2017; Jamal et al., 2017; Ahsan Ul Haq et al., 2018; Muhammad et al., 2018; Nadia and 

Lamyaa, 2018). 

Weibull and Gamma distributions are the most widely two parametric distributions for analyzing 

most of the lifetime datasets (Weibull W. 1939; Johnson et al., 1994), it also has more application apart 
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from the modeling of lifetime data (Klinken J. and Van A., 1961; Alexander G. N., 1962; Jackson O. A. 

Y., 1963). The Gamma distribution with two parameters namely scale and shape parameters is more 

flexible to model real positive data, it’s shape parameter enable it to possess increasing and decreasing 

failure rate but it’s little drawback is that it has incomplete gamma function which makes it to be more 

complicated in expressing its survival function and hazard function. This reason makes Weibull 

distribution more attractive because of its well defined statistical properties (Gupta and Kundu, 2001). 

Maxwell introduced Maxwell distribution which is popularly known for modeling data related to 

science. It can also be used to model positively skewed datasets. But its great failure is incapable to 

model lifetime dataset which is skewed to the left or right due to its increasing failure rate (Ishaq and 

Abiodun, 2020). Suppose random variable 𝑋 follows Maxwell distribution, then its cdf is given as 

follows; 
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where 𝛽 is a scale parameter.  

Exponential distribution is receiving considerable attention, because many scientists used it as their 

baseline distribution while others remodel it to another distribution. For example, Gupta introduced 

Exponentiated Exponential distribution (Gupta and Kundu, 2001), it consists of raising power to the 

cumulative function of exponential distribution by positive parameter which make it to two parameters 

distribution. Its shape parameter enables it to possess increasing or decreasing failure rate. Oguntunde 

extended Exponential distribution and proposed Weibull – Exponential distribution (Oguntunde et al., 

2015). 

Ishaq proposed Maxwell generalized family of distributions (Ishaq and Abiodun, 2020). The 

Maxwell generalized family is later extended to Maxwell – Weibull distribution. The cumulative 

distribution and probability density functions of Maxwell generalized family of distributions is 

respectively given as; 
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where 𝑀(𝑥, 𝜉), 𝑚(𝑥, 𝜉) and 𝜉 are the cumulative distribution function, probability density function and 

parameter of the baseline distribution respectively. A new class of Exponential distribution is introduced 

by applying Maxwell generalized family of distributions. 

The method used in proposing the Maxwell generalized family of distribution was introduced by 

Alzaatreh (Alzaatreh et al., 2013). The cumulative distribution function of a new generalized family of 

distribution is given by; 

( ( ))

( ) ( )

N M x

c

F x f x dx       ,R c k ;     c k      

where 𝑁(𝑀(𝑥)) is the link function of distribution function 𝑀(𝑥) for any random variable 𝑋 and 𝑓(𝑥) 

is the density function of random variable 𝑅. 

 

2. The Cumulative Distribution and Probability Density Functions of Maxwell – Exponential 

Distribution 

The section introduces the Maxwell – Exponential (Mwl-E) distribution. The motivation behind this 

research is to obtain flexible distribution that can provide different shapes of the density and hazard 

functions, and also to provide a great flexibility when tested against its competing models from well-

known family of distributions. 

The cumulative distribution and probability density functions of Mwl-E distribution can be obtained by 

inserting the cumulative distribution and probability density functions of Exponential distribution in to 

equations (3) and (4) respectively.  
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where 𝛽 and 𝜆 are the scale parameters. For more simplicity let the cumulative density function be 

written as 𝐹(𝑥) = 𝐹(𝑥, 𝜆, 𝛽) and the probability density function 𝑓(𝑥) = 𝑓(𝑥, 𝜆, 𝛽) throughout the 

paper. 

It can be observed from the figure 1 below, the plot of Maxwell – Exponential distribution possess 

right and left skewed pattern. Therefore, the Maxwell – Exponential distribution can fit data set that has 

both right and left-skewed. 
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Figure 1. Plot of Probabilty density function of Mwl-E distribution at the various values of parameters. 

 

3. An Important Linear Representation  

Linear representation of Mwl-E density function will be provided here, by applying the Exponential 

power series expansion to last term of equation (6) for 𝑥 > 0 
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Now consider the expansion for |𝑧| < 1, 𝑏 > 0, then the power series is defined to be  
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equation (7) can be further rewritten as  
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Now consider the series of generalized binomial expansion 
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Equation (8) can further be simplified by applying (9) as  
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4. The Survival and Hazard Functions of the Maxwell – Exponential Distribution  

Here survival and hazard functions of Mwl-E distribution was described. 

 

4.1 The Survival Function 

The survival function (𝑆(𝑥)) For Mwl-E distribution were obtained as  
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where 𝛽 > 0 and 𝜆 > 0 are scale parameters.  

 

4.2 The Hazard Function  

The hazard function (ℎ(𝑥)) for Mwl-E distribution were obtained as  
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It can be observed from figure 2 below that, the hazard function of Maxwell – Exponential distribution 

has increasing function. 

 

Figure 2. The Plot of hazard function of Mwl-E distribution 
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5. The Basic Properties of Maxwell – Exponential Distribution  

The basic properties of Mwl-E distribution namely; the moments, incomplete moments, probability 

weighted moments and order statistics are presented here.   

 

5.1 The Moments 

Suppose random variable 𝑋 follows Mwl-E distribution, then the non – central moment of 𝑋 is given by; 
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Here 𝑓(𝑥) is the probability density function of Mwl-E distribution, inserting equation (10) into equation 
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Equation (17) gives moments of the Mwl-E distribution. 

 

5.2 The Incomplete Moments 

The incomplete moments of Mwl-E distribution denoted by ( )r t  is defined by;  
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Here 𝑓(𝑥) is the pdf of Mwl-E distribution defined in equation (10).  
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By substituting equation (15) into equation (19) we have; 
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Equation (21) is incomplete moments of the Mwl-E distribution.  

 

5.3 The Probability Weighted Moments 

The probability weighted moments of  𝑟, 𝑞𝜖𝑅, and 𝑧 = 0 is defined below; 
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Where 𝐹(𝑥) and 𝑓(𝑥) are given in equation (5) and equation (6) respectively. Thus; 

2 2 3 2
( , , , , )

, , , , 0

( ) ( ) (1 )r x x i b k l
b i j k l

b i j k l

F x f x Q e e 


     



                                            (23) 

where 
,

( , , , , )

3 2 3 2 2 3

( 1) ( ) (4 2 3 2 ) 2

3
2 ! ! (4 2 3 2 )

2

k
a b i

b i j k l b

i b k i b k

B r A i b k l
Q

k l i b k


     

     


  
      
  

 

( ) ( 1)l m
a

l b

r l
B r

l m






  
    

  
      

 1
,

1

( ) ( )
i

b i o j j

j

A id b i j d



    and 
( 1)

!( )

j

jd
j m j





. 
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Applying generalized binomial expansion as defined in equation (9) into equation (24) we have; 
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 Equation (27) is probability weighted moments of Mwl-E distribution. 

 

5.4 The Order Statistics 

Let ( 1,..., )kX k n  denote Mwl-E random variable with samples size 𝑛, then the density function of the 

𝑘𝑡ℎ order statistics of Mwl-E distribution denoted by 
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where 𝐹(𝑥) and 𝑓(𝑥) are defined in equation (5) and equation (6) respectively.  
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By substituting equation (29) into equation (28) we have; 
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6. Parameter Estimation 

Let 𝑋𝑡(𝑡 = 1, … , 𝑛) denote a random sample from Mwl-E with parameters 𝜆 and 𝛽. By using the 

maximum likelihood estimation method, the likelihood function gives; 
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Let log ( ( 1,... ), , )tl f x t n    denote the log – likelihood function then, 
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                         (33) 

The maximum likelihood estimated parameters can be obtained by differentiating 𝑙 with respect to 

parameters 𝜆 𝑎𝑛𝑑 𝛽 and equating to zero. 
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Equation (35) is the maximum likelihood estimate of the parameter   
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Substituting equation (35) into (36) and solving the equation will yield the maximum likelihood 

estimate of the parameter  , statistical software could be used to solve the equation.  

 

7. Applications 

This section described a simulation study using quantile function and application to real – life datasets 

to demonstrate the flexibility of Mwl-E distribution. 

 

7.1 The Quantile Function  

We obtained the quantile function of Mwl-E distribution by inverting its cumulative distribution function 

as given in equation (5). 
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The cumulative distribution function can be express as; 
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2

2

3 1 1
 and 

2 2

x

x

e
n m

e









 
   

 
                                                           (38) 

The quantile function of the proposed Mwl-E model can be obtained from equation (37) below (Oluyede 

B, 2018).  

  1 ,m n u n                                                                              (39) 

By substituting for  and n m equation (39) becomes; 
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This can be written as; 
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This can be express as, 
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where 1 xw e    and 
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Now w  is given as; 
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Substituting w  in equation (44) becomes; 
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Taking log  to both sides of the equation gives; 
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The quantile function of the proposed Mwl-E distribution is given as; 
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Equation (49) is the quantile of the proposed Mwl-E distribution. 

 

7.2 Simulation 

The simulation of the random numbers is based on the quantile function defined in equation (36), data 

were generated for different sample size (𝑛) starting from 20, 50, 80, 120, 320, 720 and 1120 at different 

values of parameters, by fixing 𝛽 = 3.5 and 𝜆 = 5.2. After repeating the simulation 1000 times, the 

mean (M), variance (Var) and mean squared error (MSE) was obtained. It can be observed that in Table 

(1). The mean estimate for each parameter is approaching its fixed value.  

 

Table 1. The performance of the (Mwl-E) distribution simulation 

Sample Size (𝑛) Mean (M) Variance (Var) MSE 

20 
𝛽 = 5.594546 

𝜆 = 5.765681 

23.954450 

2.3213180 

28.341570 

2.6413140 

50 
𝛽 = 4.112448 

𝜆 = 5.398237 

3.3493340 

0.8226398 

3.7244270 

0.8619376 

80 
𝛽 = 3.874757 

𝜆 = 5.335095 

1.6565820 

0.4208483 

1.7970240 

0.4890990 

120 
𝛽 = 3.760524 

𝜆 = 5.299490 

1.0262830 

0.3165021 

1.0941560 

0.3264000 

320 
𝛽 = 3.605025 

𝜆 = 5.241440 

0.3470734 

0.1195623 

0.3581035 

0.1212795 

720 
𝛽 = 3.544303 

𝜆 = 5.217804 

0.1396096 

0.0514281 

0.1415724 

0.0517451 

1120 
𝛽 = 3.532054 

𝜆 = 5.213228 

0.0872496 

0.0322500 

0.0882771 

0.0324250 
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7.3 Model Comparison 

The proposed Mwl-E distribution will be compared with other distributions using real – life datasets to 

demonstrate its flexibility. The competing models are; Exponential distribution, Exponentiated – 

Exponential distribution and Burr X – Exponential distribution. The competing models will be 

represented as Exp-X, Exp-E and Bux-E respectively. The first competing model has only scale parameter. 

It is also the baseline distribution of the proposed model research. The second and third models have 

two parameters (scale and shape parameters). The distribution functions of the competitive models are 

respectively given as; 

( , ) , , 0xf x e x                                                                      (50) 
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                (52) 

To assess the best model from the competitive distributions we use some information criteria, this 

includes; Akaike Information Criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike 

Information Criterion (AICC) and Hannan – Quinn Information Criterion (HQIC). The least value of 

these criteria implies the best among the distributions that fit data sets, the formulae of these criteria are 

given as follow;  

2 2ln( )AIC k L                                                                           (53) 

2 ln( ) 2ln( )BIC k N L                                                                  (54) 

22 2

1
C

k k
AIC AIC

N k


 

 
                                                                 (55) 

2 ln(ln( ))HQIC k N                                                                       (56) 

where 𝐿 is the value of the likelihood, N is the number of recorded measurement and k is the number 

of estimated parameter. 

 

7.4 First Data Set   

The first dataset is strengths of 1.5cm glass fiber. It was used previously by (Oguntunde et al., 2017) 
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Table 2. Strengths of 1.5cm glass fiber 

0.55 0.74 0.77 0.81 0.84 1.24 0.93 1.04 1.11 1.13 1.30 1.25 1.27 

1.28 1.29 1.48 1.36 1.39 1.42 1.48 1.51 1.49 1.49 1.50 1.50 1.55 

1.52 1.53 1.54 1.55 1.61 1.58 1.59 1.60 1.61 1.63 1.61 1.61 1.62 

1.62 1.67 1.64 1.66 1.66 1.66 1.70 1.68 1.69 1.70 1.78 1.73 1.76 

1.76 1.77 1.89 1.81 1.82 1.84 1.84 2.00 2.01 2.24    

 

Table 3. The information criteria on the strengths of 1.5cm glass fiber 

Models Estimates AIC BIC AICC HQIC 𝑝-value 

Exp-X 𝜆 = 0.6648 176.611 178.738 176.677 177.446 9.278e-10 

Exp-E 
𝜆 = 0.8693 

𝛼 = 1.9726 
140.457 144.712 140.661 142.128 3.204e-05 

Bux-E 
𝜆 = 0.5350 

𝛼 = 1.9286 
48.2448 52.4990 48.4482 49.9142 1.376e-05 

Mwl-E 
𝛽 = 1.8554 

𝜆 = 0.9043 
37.1853 41.4396 37.3887 38.8556 0.01646 

 

7.5 Second Data Set 

The second data is the strengths of glass fibers data set comprising 63 observations. It was used by 

(Ishaq and Abiodun 2020). 

 

Table 4. The strengths of glass fibers 

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 

1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49 1.53 1.59 

1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 

1.50 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24 

0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 

1.77 1.84 0.84 1.24 1.30 1.48 1.51 1.55 1.61 1.63 

1.67 1.70 1.78 1.89       
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Table 5. The information criteria on the strengths of glass fibers 

Models Estimates AIC BIC AICC HQIC 𝑝-value 

Exp-X 𝜆 = 0.6637 179.661 181.804 179.726 180.504 5.497e-10 

Exp-E 
𝜆 = 0.8693 

𝛼 = 1.9726 
142.814 147.099 143.014 144.499 2.63e-05 

Bux-E 
𝜆 = 0.4793 

𝛼 = 1.9710 
48.4701 52.7563 48.6701 50.1559 0.02577 

Mwl-E 
𝛽 = 1.7950 

𝜆 = 0.9037 
37.7465 42.0328 37.9465 39.4323 0.00258 

                                                                                          

It can be observed from tables (3) and (5) that the Mwl-E distribution is more flexible compare to other 

competing models because it has the least value of information criteria.  

 

8. Research Findings 

An extension of exponential distribution namely Maxwell – Exponential distribution was proposed by 

using Maxwell generalized family of distribution. Its statistical properties such as moments, incomplete 

moments, probability weighted moments and order statistics was discussed. Simulation study was 

conducted to demonstrate the potentiality of the proposed model estimator. The proposed model was 

applied to real life data sets, in both data sets it was shown a great flexibility over the competing models.   

 

9. Conclusion  

A new extension of Exponential distribution called Maxwell – Exponential distribution was proposed 

using Maxwell generalized family of distributions. Its statistical properties have been discussed. The 

plot of Maxwell – Exponential density function possesses the pattern of right and left skewed at different 

values of parameters. The parameters of the study model were estimated using the maximum likelihood 

method. The Simulation study was carried out to demonstrate the potentiality of proposed model 

parameters. An application of Maxwell – Exponential distribution to the real – life data sets was carried 

out. In both given datasets, the proposed model has performed well more than to the other competing 

models. Therefore the proposed model is a great substitute to the competing models in modeling these 

datasets concerning the first data (strengths of 1.5cm glass fiber) and the second data (The strengths of 

glass fibers). 
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