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Abstract 

Mortality dynamics plays an important role in understanding mortality and life expectancy that will 

affect on economy of the countries. Many studies have considered Lee Carter method with time index 

as an indicator for forecasting. In order to forecast the mortality rates, the period index in the Lee Carter 

model is applied to the random walk with drift model. Despite its performance on the forecasting ability, 

it is lack in term of time varying parameter that leads to higher error and less accurate forecasting result. 

This is because the random walk with drift model is only adequate to data with linear series. In this 

study, the concept of non-linear time series model is used and a self-exciting threshold autoregressive 

(SETAR) will proposed to the period index. It shows that our model outperformed the random walk 

with drift (RWD) model for forecasting accuracy when Malaysian mortality data from 1980-2010 are 

considered. Long term forecasting analysis up to 2017 comparing the two models are then performed. 

 

Keywords: Drift model, Lee Carter model, Random Walk with Drift, Self-exciting Threshold 

Autoregressive. 

 

1. Introduction 

In the last few decades, the quality of human life has been improving. This can be seen by the decline 

in mortality and increase life expectancy. While there might be slow decline in mortality in poorer areas 

and countries, in general it is improving year upon year. This leads to growing number of elderly 

populations recently. Financially, it could present a burden to a country’s economics in terms of 

providing prevalent healthcare and bigger amount of pension especially to government pensioners. 

Thus, it is important to monitor the trend continuously and to understand mortality dynamics.  
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In Europe, the pension system of countries like Germany and Finland are very much associated 

to life expectancy. The UK’s retirement age is also expected to be raised in the next few years. 

In Malaysia, the retirement age has been revised three times (Stoeldraijer et al., 2013). As 

people live longer, it is expected that they can also work up to higher age before retiring. Retirement 

also relates to longevity risk. There is a risk that a person will outlive his pension fund or an insurance 

company might have to pay more to policy holders as they live a lot longer. 

As a result, there are growing number of research being conducted in modelling and forecasting 

mortality. The breakthrough came in 1992, when Lee and Carter proposed Lee Carter (LC) model 

(Shapovalov et al., 2019). The model was first introduced using mortality data from the United States 

(US). It is a stochastic model that incorporates age and year factor in a log bilinear form. The model 

comprises of age specific constants ax and bx, and a time varying index, kt. The age specific constants 

would explain the general trend of mortality and also the speed of change in death rate in relation to 

time varying index. The time varying index is an indicator of mortality level. The log of mortality would 

be fit into this model and to get the forecast, the time varying index would be projected a few steps into 

the future. According to Lee and Carter, they tried to find the best ARIMA model to fit kt. Following 

Box and Jenkins procedures, they found that the best model fit to be random walk with drift and forecast 

is carried out using this model. This model is used extensively by the researchers because of its 

simplicity and robustness (Augustine & Saratha, 2015). 

Other researchers have also extended this model to further improve its effectiveness in the 

model and forecast by introducing a new estimation protocol (Clements & Krolziq, 1998). They 

carefully assessed LC model and performed slight changes to each part of the model and test if any 

changes could improve the model. A few researchers like Cairns et al. (2009), Renshaw and Haberman 

(2006) have included cohort as a parameter in the model. This would then enhance the forecast ability 

of the model (Tong, 1990; Hansen & Seo, 2002). Others like De Jong and Tickle (2006) and Wan 

Zakiyatussariroh et al. (2014) have used state space in trying to represent LC model so that model error 

can be reduced (Cuthbertson, 2004; Clements & Smith, 1997). Meanwhile, CBD model introduced by 

Cairns, Blake and Dowd focused on the higher age population especially 55 years and above (Di Narzo 

et al., 2009). CBD model uses logit of the mortality whereby the mortality is defined as death 

probabilities instead of death rate.  

Despite the success of LC model, there is a shortcoming. The LC’s time varying parameter, kt 

was modelled using a linear ARIMA model. The assumption made by LC is that the kt of US population 

was “roughly” linear. They even admitted that linearity would not be reasonable if the time series was 

adjusted back to the centuries preceding the analysis (Shapovalov et al., 2019). Shapovalov et al. (2019) 

mentioned that the random walk with drift model only hold if the linear trend is continuous. Analysis 
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of LC model on Malaysia male and female mortality data shows that there is declining trend of the time 

varying parameter, kt. However, the series is not entirely linear. This could result in higher error when 

fitted with random walk with drift and the forecast would be less accurate.  

To achieve more reasonable fit and accurate forecast, this study suggests that the time varying 

parameter to be modelled using non-linear time series model. Most of non-linear time series model is 

applied in economics and finance. They have been used in particular to model exchange rates and stock 

exchanges for example comparing random walk with drift and feed forward neural network models 

(Hyndman et al., 2011). The study showed that non-linear models was better than linear models in 

fitting and forecasting.  

In this study, we are going to model and forecast the time varying parameter, kt using self-

exciting threshold autoregressive (SETAR) model and compare the performance with random walk 

with drift model. Threshold autoregression (TAR) was introduced by Tong in 1978.  The model contains 

Linear autoregression in two or more regime or series and it is governed by a threshold value. The 

model is called self-exciting when the threshold is the lag value of time series (Clements & Krolziq, 

1998). 

The model will be discussed further in section 2. In section 3, we will discuss our findings and 

discussion. Section 4 will be the conclusion. 

 

2. Materials and Methods 

In this section, to illustrate the application of Lee Carter model and the time varying parameter which 

will be modelled using random walk with drift and SETAR model, this study used the mortality data 

from Department of Statistics Malaysia from year 1980 to 2017. The log death rate for each age specific 

can be seen in Figure 1. Overall, Malaysian mortality shows declining trend in every age group across 

the years. It can be noted that there is a vast improvement in mortality for population of ages between 

5-10 years and 25 years. The improvement for lower ages might be due to the improvement in health 

services that the government implemented to curb child and infant mortality. While improvements in 

young adults might be due to lower number of casualties in accident (Tong, 1990). Our analysis will 

use the Malaysian mortality data that was separated into two parts. One part is data from 1980 to 2010 

is used as in sample fit. Another part of data which is from 2011 to 2017 was used form out of sample 

fit. 
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Figure 1. Age specific log death rate for Malaysian population from 1980-2017. Earlier years log 

death rates are marked with red, yellow, and green lines. Most recent year log death rates are marked 

with light blue and purple lines 

 

2.1 Lee-Carter mortality model 

The LC model was introduced in 1992. This model is chosen as it is simple and consists of very few 

parameters. It would be more parsimony as compared to model with a lot more parameters. The 

structure of model is given by Eq. (1): 

               𝑙𝑜𝑔(𝑚𝑥,𝑡) = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝜀𝑥,𝑡                                                                                               (1) 

where 𝑚𝑥,𝑡 is the central death rate at age x and year t, 𝑎𝑥 and 𝑏𝑥 are the age specific parameters, 𝜀𝑥,𝑡 

is the error term at age x and time t which has 0 mean and variance σ2. 𝑘𝑡  is the time varying parameter 

or mortality index at time 𝑡. 

Lee and Carter imposed two constraints to get unique solution to parameter estimate. Those 

were ∑ 𝑘𝑡 = 0𝑡 and ∑ 𝑏𝑥 = 1𝑥 . The parameters were estimated using Maximum Likelihood Estimation 

(MLE). The likelihood function on the Poisson number of death can be represented in Eq. (2): 

             𝐿𝑥,𝑡(𝜃; 𝑑𝑥,𝑡) =
𝜆𝑥,𝑡

𝑑𝑥,𝑡𝑒−𝜆𝑥,𝑡

𝑑𝑥,𝑡!
      (2) 

where 𝜇𝑥,𝑡 = 𝑒𝑎𝑥+𝑏𝑥𝑘𝑡, 𝜆𝑥,𝑡 = 𝐸𝑥,𝑡𝜇𝑥,𝑡 and the simplified log likelihood function is given by Eq. (3): 

   ln𝐿𝑥,𝑡(𝜃; 𝑑𝑥,𝑡) = 𝑑𝑥,𝑡ln(𝜆𝑥,𝑡) − 𝜆𝑥,𝑡 − ln(𝑑𝑥,𝑡!)                            (3) 
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2.2 Time varying parameter 𝑘𝑡 modelling 

In this section, the time varying parameter are evaluated by using random walk with drift and  

self-exciting threshold autoregressive. Random walk is used to forecast error that is in linear and  

self-exciting threshold autoregressive is used to forecast error that are non-linear. 

  

2.2.1 Random walk with drift  

Lee and Carter searched for the best ARIMA model fit 𝑘𝑡 and through procedures by Box and Jenkins 

found random walk with drift to be suitable model. The model is in the form: 

𝑘𝑡 = 𝑘𝑡−1 + 𝑑 + 𝜀𝑡 

where 𝑘𝑡−1is the lag for 𝑘𝑡, d is the drift parameter, and𝜀𝑡 is error term. A random walk is a process 

where the value at time t is equal to its past value plus white noise or an error term. The error term is 

independent and identically distributed with mean 0 and variance 𝜎2. A drift parameter 𝑑 acts like a 

trend detector. A 𝑑 > 0 denotes an upward trend. Forecasting random walk is simple since future values 

of 𝑘𝑡+𝑠 for 𝑠 > 0 is 𝑘𝑡. 

 

2.2.2 Self-exciting threshold autoregressive 

Threshold autoregressive (TAR) is one of nonlinear model. It is a piecewise AR model where the regime 

switching variable will tell in which regime a process should follow. Consider a simple TAR model that 

consists of two regimes and one lag in each of regime. The model can be represented in Eq. (4): 

  𝑘𝑡 = {
∅(1)𝑘𝑡−1 + 𝑢𝑡

(1)if 𝑘𝑡−𝑑 < 𝑟

∅(2)𝑘𝑡−1 + 𝑢𝑡
(2)if 𝑘𝑡−𝑑 ≥ 𝑟

                                                                                (4) 

where 𝑘𝑡  is the time varying parameter we are interested to model, 𝜙 are constants, 𝑘𝑡−1is the lag value 

in each regime, d is delay parameter,𝑢𝑡 is the error term, 𝑟 is the threshold value and 𝑘𝑡−𝑑is the regime 

switching variable. When the regime switching variable, 𝑘𝑡−𝑑is less than threshold value 𝑟, the process 

shall follow first regime. If 𝑘𝑡−𝑑 is more or equal to 𝑟, the process shall follow second regime. The 

model is known to be a self-exciting threshold autoregressive (SETAR) model when the regime 

switching variable is the past realisation of the process. In this case, the regime switching variable would 

be 

𝑘𝑡−𝑑 = 𝛽0𝑘𝑡 + 𝛽1𝑘𝑡−1 
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The model can also be more than just one regime and be written as SETAR(𝑁𝑟, 𝑝(1), . . . , 𝑝(𝑗)). 

𝑁𝑟 is the number of regimes and 𝑝 the number of lag in particular regime.  The general form of SETAR 

can be expressed in Eq. (5): 

  𝑘𝑡 = ∑ 𝐼𝑡
(𝑗)

(𝜙0
(𝑗)

+ ∑ 𝜙𝑖
(𝑗)

𝑘𝑡−𝑖 + 𝑢𝑡
(𝑗)𝑃𝑗

𝑖=1
) , 𝑟𝑗−1 ≤ 𝑘𝑡−𝑑 ≤ 𝑟𝑗

𝐽
𝑗=1     (5) 

where 𝐼𝑡
(𝑗)

 is an indicator function for the 𝑗th regime. It will take the value 1 when in it is in regime 𝑗 

and 0 otherwise. 𝑘𝑡−𝑑  is the regime switching variable and 𝑢𝑡
 is the error term. 

To estimate the parameters in the model, [p, clement] assuming normality, let 𝑙0(�̂�, �̂�𝑎
2) be the 

log-likelihood function evaluated at the maximum estimates of 𝜙 = (𝜙0, . . . , 𝜙𝑝)′and 𝜎𝑎
2. The 

likelihood function under the alternative can be determined if 𝑟1 is given. Let 𝑙1(𝑟1; �̂�1, �̂�1
2; �̂�2, �̂�2

2)be 

the log likelihood function evaluated at the maximum likelihood estimates of 𝜙𝑖 = (𝜙0
(𝑖)

, . . . , 𝜙𝑝
(𝑖)

) ′and 

𝜎𝑖
2, conditioned on knowing the threshold 𝑟1. The log likelihood ratio 𝑙(𝑟1) defined as 𝑙(𝑟1) =

𝑙1(𝑟1; �̂�1, �̂�1
2; �̂�2, �̂�2

2) − 𝑙0(�̂�, �̂�𝑎
2) is then a function of the threshold 𝑟1, which is unknown. 

To determine the lag order, Akaike information criterion (AIC) shall be used. Tong (1990) 

suggested an AIC for threshold models as can be represented in Eq. (6): 

  AIC(𝑔) = ∑ {𝑛𝑗ln�̂�𝜀𝑗
2 + 2(𝑝𝑗 + 1)}𝑗     (6) 

where g is the lags, 𝑛𝑗 is the number of observations in each regime, �̂�𝜀𝑗
2 is the residual variances of each 

regime, and𝑝𝑗 is the lag of each regime. 

To estimate the parameter threshold, 𝑟 and delay parameter, 𝑑 in SETAR model, this study will 

follow Hansen and Seo’s method by using a grid search procedure over two-dimensional space (Hansen 

& Seo, 2002; Cuthbertson, 2004). 

The forecasting of nonlinear models has proven to be quite difficult. Some studies such as Daco 

and Satchell (1999) suggested nonlinear fit better however due to difficulty in determining the regime 

in which a process is at, forecast seems not to be as good. However, study by Clements and Smith 

(1997) proved that Monte Carlo method did quite well as compared to other forecasting method. So, in 

this study, the Monte Carlo method will be used to forecast our SETAR model. The Monte Carlo method 

for a one step forecast is given by Eq. (7): 

  �̂�𝑚+1
𝑀𝐶 = 𝛼0 + 𝛼1𝑘𝑚 + 𝐼𝑚(𝑟)(𝛽0 + 𝛽1𝑘𝑚)    (7) 

where MC represents Monte Carlo, 𝑚 is the starting point, 𝛼and 𝛽 are constants, 𝐼(•)is the indicator 

function and 𝑟is the threshold parameter. Generally, the n step ahead Monte Carlo forecast is given by 

Eq. (8): 
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  �̂�𝑚+𝑛
𝑀𝐶 =

1

𝑁
∑ �̂�𝑚+𝑛

𝑀𝐶𝑗𝑁
𝑗=1     (8) 

where 𝑗 is the regime. 

The models will be implemented with the help of StMoMo and tsDyn package in R studio 

developed by Dielman (1986) and Di Narzo et al. (2009). 

 

2.3 Parameter estimation 

This section assesses the estimated parameters for the Lee Carter, RWD and SETAR model. Figures 2, 

3 and 4 describe on parameters of Lee Carter Model while Table 1 shows the estimation parameters for 

𝒌𝒕 data from SETAR model. 

 

2.3.1 Lee Carter parameter estimates 

Figures 2, 3 and 4 shows the estimated parameters of 𝑎𝑥, 𝑏𝑥 and 𝑘𝑡 for LC model. The parameter 𝑎𝑥 

depicts the shape of age specific death. Parameter 𝑏𝑥describes the changes in mortality with relation to 

𝑘𝑡. In each specific age, mortality seems to be improving, judging by the positive values of 𝑏𝑥. 

Parameter 𝑘𝑡 is the time varying factor in LC model. Figure 4 shows that over the years, it has a 

declining trend except for a few jumps in particular in 1998 and 1999.  This parameter can also reflect 

the nature of mortality of certain population. The data used was Malaysian mortality data from 1980 to 

2017. The resultant values of parameter 𝑘𝑡was then divided into two parts for modelling. The training 

data set was from 1980 to 2010 for in sample purpose while test data set used was from 2011 to 2017 

for out of sample forecasting. 

 

Figure 2. Estimated values of 𝑎𝑥 over sample period of 1980-2017 
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Figure 3. Estimated values of  𝑏𝑥 over sample period of 1980-2017 

 

 

Figure 4. Estimated values of  𝑘𝑡 over sample period of 1980-2017 

 

2.3.2 RWD parameter estimate 

In the RWD model, the only parameter needed to be estimated is drift, 𝑑. This parameter will show 

trend as well as the change in series. For data sample of 𝑘𝑡from 1980 to 2010, the estimate is  

𝑑 = −0.2715. So, the model is given by Eq. (9): 

  𝑘𝑡 = 𝑘𝑡−1 − 0.2715 + 𝜀𝑡            (9)  

where 𝜀𝑡 ∼ 𝑁(0,0.0918). 

 

2.3.3 SETAR parameter estimate 

There are a few steps to take in order to estimate parameters for SETAR. First, the number of regimes 

is determined and number of lags each regime should take by using grid search. Table 1 shows the grid 

search results with lowest AIC combination sits on top of the table. The number of regime, 𝑁𝑟 is two 

regimes, with lag of first regime, 𝑝(1)is one and lag of second regime, 𝑝(2) is one. The threshold value, 

𝑟 was estimated to be 1.0233.  
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Table 1. Estimated SETAR parameters for ktdata over sample period of 1980-2010. mL is the 

number of lag in lower regime and mH is the number of lag in upper regime 

 mL mH Threshold AIC 

1 1 1 1.0232530 -41.58236 

2 1 1 1.1568560 -41.44133 

3 1 1 0.3126367 -41.01514 

4 1 2 1.0232530 -40.15852 

5 1 1 0.8542161 -40.13361 

6 1 2 0.8542161 -40.12701 

7 1 2 1.1568560 -39.98272 

8 1 2 0.3126367 -39.82830 

9 2 1 1.0232530 -39.76650 

10 2 1 1.1568560 -39.54078 

 

Following that, the coefficients,𝜙 for each regime is estimated and regime switch variable, 

𝑘𝑡−𝑑. The 𝑘𝑡−𝑑 was determined to be 

𝑘𝑡−𝑑 = 𝑘𝑡−1 

where 𝛽0 = 0and 𝛽1 = 1. And the SETAR(2,1,1) for 𝑘𝑡 over sample period of 1980-2010 is given by 

Eq. (10): 

  𝑘𝑡 = {
1.0727𝑘𝑡−1 − 0.0234 + 𝑢𝑡if 𝑘𝑡−1 < 1.023
1.0899𝑘𝑡−1 − 0.6308 + 𝑢𝑡if 𝑘𝑡−1 ≥ 1.023

              (10) 

where 𝑢𝑡 ∼ 𝑁(0,0.1894). 

 

3. Results and Discussion 

In this study, the goodness of fit for a model will be determine using several statistical measures. This 

will help in deciding which model is better in terms of in sample fit and out of sample forecast. The 

measures include Akaike information criterion (AIC), root mean squared error (RMSE) and mean 

absolute percentage error (MAPE). AIC is used to find parsimony model. It penalizes models that 

includes more parameters. The objective is to determine model with minimum AIC value as it represent 

model that fit data better. RMSE measures the standard deviation of estimated or forecasted value from 

the actual value. MAPE measures how far is the distance between estimated and the actual value. With 

the error measure, the model with lowest value will be deemed to be the most accurate. Should there be 
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outliers in the actual values or data, Dielman (1986) suggest that MAPE to be used instead of RMSE. 

The out-of-sample results for RWD and SETAR models were then compared. Then, a long-term 

analysis up to 23 years ahead was conducted.   

 

3.1 Scatter plot of residuals comparison 

To get a good model fit, the scatter plot of residuals must be randomly distributed and show no clear 

pattern or clump. Figures 5 and 6 shows the deviance of residuals for both RWD and SETAR models 

to 𝑘𝑡data.  The closer the residuals to 0 indicates a better fit between fitted value to original data. Both 

scatter plots show no real pattern apart from a few outliers.  

 

Figure 5. Scatter plot of residuals for RWD for period 1980 to 2010 

 

Figure 6. Scatter plot of residuals for SETAR for period 1980 to 2010 

 

3.2 AIC and BIC comparison 

Table 2 shows AIC and BIC values of both models. AIC and BIC can also rank models based on 

parsimony, that is model that can explain or fit data based on optimal number of parameters. A low 

parsimony model is a model that consist of more parameters to fit model. A high parsimony model is a 
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model that uses less parameter to fit model. Ideally, this study prefers somewhere in the middle where 

it is optimal. A low AIC and BIC are preferred since the calculation impose a penalty on model that use 

more parameter. Here, since the number of parameters used in SETAR model is more, it is expected 

that it will fit the data better. However, since the log likelihood for SETAR is bigger, it resulted in lower 

AIC and BIC values. Therefore, SETAR model fits data better while being more parsimony. 

Table 2. Number of parameters, log likelihood, AIC and BIC for RWD and SETAR model fitted to 

𝑘𝑡  for period 1980-2010 

Model Number of 

parameters 

Log 

likelihood 

AIC BIC 

RWD 2 -21.95 47.9 50.71 

SETAR 6 25.885 -39.77 -31.16 

 

3.3 MAPE and RMSE comparison 

Table 3 presents the values of MAPE and RMSE for both models. The error representation of how far 

the fitted values to the original data values are. The lower value of MAPE and RMSE for SETAR model 

indicated the fitted values are much closer to the original data values.  

Table 3. MAPE and RMSE values for RWD and SETAR model fitted to 𝑘𝑡 for period 1980-2010 

Model MAPE RMSE 

RWD 0.715 0.5029 

SETAR 0.3932 0.4486 

 

3.4 Forecasting for out of sample comparison 

The values of 𝑘𝑡 was forecasted via each model’s forecast method and then compared against the 

original 𝑘𝑡data values from the LC model. MAPE and RMSE will measure the forecasting accuracy of 

both methods. Table 4 shows MAPE and RMSE values of both models. The results show that SETAR 

model have lower MAPE and RMSE values suggesting better forecasting accuracy than RWD in 

forecasting 𝑘𝑡over the sample period.  

 

 

 



Journal of Statistical Modeling and Analytics  Vol 4(2), 28-42. 2022 

 

39 
 

Table 4. RMSE and MAPE for RWD and SETAR 7 years’ projection for ktover sample period 2011-

2017 

Model MAPE RMSE 

RWD 0.1370011 0.5984093 

SETAR 0.1152654 0.5689715 

 

 
 

(a) (b) 

 

Figure 7(a) and Figure 7(b). Out of sample forecast of 𝑘𝑡 based on RWD and SETAR models fitted 

to 𝒌𝒕 over sample period 1980-2017. Black lines represent original 𝑘𝑡data values, blue lines represent 

upper 95% forecast interval, red line represents the mean forecast and green line represent lower 5% 

forecast interval 

Out of sample forecast of 𝑘𝑡 shows huge difference in both models. Figure 7(a) and Figure 7(b) 

shows the forecast along with upper 95% forecast interval and lower 5% forecast interval values. In 

RWD, the upper and lower interval does not begin at the same point of forecast origin. It opens up 

possibilities of wider mortality projections but it is also possible that the projection of a RWD will not 

follow historical data and start at a point further away from forecast origin. SETAR forecast’s interval 

in the meantime does start from forecast origin indicating a more controlled forecast. Mean reversion 

directly starts at the origin. This means that the forecast value should return to the average line over 

time.  

 

3.5 Forecasting overall 𝒌𝒕 for 23 years ahead 

We then used the overall 𝑘𝑡values from LC model for sample period 1980 to 2017 and projected 23 

years ahead to the year 2040 to see mortality improvements made using both models.  For RWD, the 

model was given by  

𝑘𝑡 = 𝑘𝑡−1 − 0.2411 + 𝜀𝑡 

where 𝜀𝑡 ∼ 𝑁(0,0.0756). And the SETAR (2,1,1) for overall 𝑘𝑡data values were given by Eq. (11): 

RWD SETAR 
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  𝑘𝑡 = {
1.0330𝑘𝑡−1 − 0.0402 + 𝑢𝑡𝑖f 𝑘𝑡−1 < 1.023
1.0899𝑘𝑡−1 − 0.6308 + 𝑢𝑡𝑖f 𝑘𝑡−1 ≥ 1.023

                                     (11) 

where 𝑢𝑡 ∼ 𝑁(0,0.1582) 

 

(a) (b) 

 

Figure 8 (a) and Figure 8(b). 23 years ahead forecast for log death rate of Malaysian data using 

RWD and SETAR as 𝑘𝑡 modeller 

Figure 8 (a) and Figure 8(b) shows the forecast of log death rate for Malaysian mortality in the 

year 2018 up to 2040. Although it seems the same, but RWD did forecast mortality decline much 

quicker than SETAR model in all age group. However, this could be because of the wide forecast 

interval and poorer goodness fit to history data could lead to over-forecasting. Both models share the 

same foundation that is auto regression but the ability of SETAR to switch between regimes of auto 

regression through the regime switching variable makes it much better in model fit and hence better 

forecast. 

 

4. Conclusion 

This paper compares random walk with drift and self-exciting threshold auto regressive in modelling 

the time varying parameter, 𝑘𝑡 in Lee Carter mortality model. Since it was noted that mortality in 

Malaysia is not relatively linear, we suggest the use of non-linear model in particular SETAR model to 

model 𝑘𝑡, improve the model fit and as a result produce better forecast. Each model was discussed in 

detail and the in sample fit and out of sample accuracy was analysed.  

The result showed that SETAR model did fit 𝑘𝑡 better than RWD. This was shown by the lower 

values of MAPE, RMSE, AIC and BIC. However, the residuals did not show much difference between 

the models. 

The out of sample forecasting analysis showed that SETAR had lower errors in MAPE and 

RMSE than RWD. It is suggested that the forecast of SETAR is much closer to the original 𝑘𝑡data 

values. The forecast interval also indicates interesting finding in which RWD model forecast have a 

higher possibility to project wider mortality change. This could mean the forecast of RWD could deviate 

RWD SETAR 
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from forecast origin at any given time. In contrast, the forecast of SETAR is well within historical data. 

Lastly, the 23-year forecast into the future suggest that RWD will predict much faster mortality 

improvement across ages. However, since it has been shown that RWD have relatively larger error and 

wider forecast interval, the forecast could be due to underfit historical data and over forecast. This study 

indicates that nonlinear model results in better model fit and forecast than linear model in general and 

especially in modelling the time varying parameter, 𝑘𝑡 in Lee Carter mortality model for Malaysian 

data.  
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