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Abstract 

A linear functional relationship model can be used to model the relationship between two circular 

variables when both variables are observed with errors. When the ratio of error concentration parameter 

is unknown, it is suggested that the replicated linear functional relationship model be used. The purpose 

of this paper is to present all the parameter estimates of the replicated linear functional relationship 

model for balance replicates and equal circular variables. Simulations studies are performed to 

understand the behavior of the parameter estimators for the balance-equal replicated linear functional 

relationship model. The empirical results obtained suggest that the proposed parameter estimation 

method performs well with small bias. A simple application of the model is demonstrated by analyzing 

a real dataset of a wind directional data. 

 

Keywords: Circular Variables, Linear Functional Relationship Model, Parameter Estimation, 
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1. Introduction  

The unidentifiability problem in an unreplicated linear functional relationship model (LFRM) can be 

avoided if the ratio of error concentration parameter   is known in order to estimate the parameters 

(Mokhtar et al., 2017).  However, the value   is unknown in most actual circumstances because the 

information is either unavailable or not provided by field researchers.  One essential strategy to avoid 

this difficulty is to collect this information from the sample itself (Arif et al., 2020b).  This is 

accomplished by recognizing groups of pseudo-replicates from unreplicated linear data in which all 

parameters are identifiable and reliably approximated (Hussin et al., 2004).  Furthermore, the replicated 
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LFRM can be employed by replicating observations from unreplicated data or by making replication 

available.  The replicated LFRM can be utilized to avoid the LFRM's unidentifiability problem.  

Furthermore, since the error concentration parameter for 
iX  variable (

x ) and error concentration 

parameter for 
iY  variable (

y ) can be estimated separately using replicated LFRM, the assumption or 

knowledge on the ratio of the error concentration parameter is no longer required.  Practical applications 

can be seen in many fields  such as meteorology (Moslim et al., 2021), psychopathology (Hinton et al., 

2018), physical recovery (Hannanu et al., 2020), genetic networks (Selvaggi et al., 2019) and Parkinson 

diagnostic (Goetz et al., 2019) 

Assume that each group has the same size, which implies that the observations or components in 

each group are the same.  This is referred to as balance and equal replicates, where measurements ijx

( 1,2, , ij m= ) are made on 
iX  and measurements 

iky ( 1,2, , ik m= ) are made on 
iY  are equal 

( 1,2, , ij k m= = ).  There may be replicated observations of 
iX and 

iY  occurring in p  groups given a 

certain pair ( ),i iX Y  and 1,2, ,i p= . In this paper, we extended the works of Mokhtar et al. (2017), 

to derive all the parameter estimates of the model. 

 

2. Balance-Equal Replicated Linear Functional Relationship Model  

As mentioned earlier, the balance-equal replicated LFRM is an extension of the unreplicated LFRM.  

Corresponding to a particular pair ( ),i iX Y  there may be replicated observations of 
iX  and 

iY  occurring 

in p  groups.  Suppose ijx  and 
iky  are observed values of the circular variables 

iX  and 
iY  respectively, 

thus 0 , 2ij ikx y    for 1,2, , ,i p= 1,2, , ij m=  and 1,2, , ik m= .  For any fixed iX  and iY , 

noted that the observations ijx  and 
iky  have been measured with errors 

i  and 
i  respectively.   

By assuming   as rotation parameter and   as slope parameter, the balance-equal replicated 

LFRM can be written as 

( )

,

mod 2

for 1,2, , , 1,2, , and 1,2, ,

ij i ij ik i ik

i i

i i

x X y Y

Y X

i p j m k m

 

  

= + = +

= +

= = =

                                       (1) 

where i  and i  are homogeneous and independently distributed by von Mises distributions with zero 

mean circular, that is ( )0,i xVM   and ( )0,i yVM   where x  is error concentration parameter 

for iX  variable and y  is error concentration parameter for iY  variable.   

There are ( )4p +  parameters that need to be estimated by using maximum likelihood estimation 

,
ˆˆ ˆ ˆ, , x y     and the incidental parameters ˆ

iX .  Note that in unreplicated LFRM the ratio of error 
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concentration parameter   was needed to estimate the concentration parameters of 
x  and y .  

However, in replicated LFRM the ratio of error concentration parameter is unnecessary.  

Von Mises distribution is one of the finest for describing circle distribution (Kamisan et al., 2010).  

The probability density function of the von Mises distribution is provided for every circular random 

variable   with mean direction   and concentration parameter   as, 

( )
( )

( ) 
0

1
, ; exp cos

2
g

I
     

 
= −  

where ( )  
2

0

0

1
exp cos

2
I d



   


=   is defined as the modified Bessel function of the first kind and 

order zero.  The von Mises distribution's log-likelihood function can be represented by 

( ) ( ) ( )

( ) ( ) ( )

0

0

1 1 1 1

log , , , , ; , log 2 log

log cos cos

ijx y i ik x

p pm m

y x ij i y ik i

i j i k

L X x y NM N I

M I x X y X

     

    
= = = =

= − −

− + − + − − 
                      (2) 

where N  is the total sample size of ijx  and M  is the total sample size of 
iky . 

 

3. Parameter Estimation Using Maximum Likelihood Estimation 

All estimated parameters can be derived by differentiating Equation (2) with respect to respective 

parameters. 

 

i. Parameter estimation for the rotation parameter 

 The first partial derivatives of Equation (2) with respect to   is 

( )
1 1

log
sin

p m

y ik i

i k

L
y X  

 = =


= − −


  

 Setting this equal to zero and simplifying 

( ) ( )
1 1 1 1

ˆ ˆˆ ˆˆ ˆsin cos cos sin 0
p pm m

ik i ik i

i k i k

y X y X   
= = = =

− − − =   

 Solving for  ̂  

( )

( )
1 1

1 1

ˆ ˆsin

ˆtan
ˆ ˆcos

p m

ik i

i k

p m

ik i

i k

y X

y X







= =

= =

−

=

−




 

( )

( )
1 1 1

1 1

ˆ ˆsin

ˆ tan
ˆ ˆcos

p m

ik i

i k

p m

ik i

i k

y X

y X







− = =

= =

 
− 

 =
 

− 
 




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Let 1ˆ tan
S

C
 −  
=  

 
, where ( )

1 1

ˆ ˆ, sin
p m

ik i

i k

S y X
= =

= −  and ( )
1 1

ˆ ˆcos
p m

ik i

i k

C y X
= =

= − .  Then 

1

1

1

tan , 0, 0

ˆ tan , 0

tan 2 , 0, 0

S
S C

C

S
C

C

S
S C

C

 



−

−

−

  
  

 
  

= +   
 

  
+    

 

                                        (3) 

 

ii. Parameter estimation for the slope parameter   

 The first partial derivatives of Equation (2) with respect to   is 

( )
1 1

log
sin

p m

y i ik i

i k

L
X y X  

 = =


= − −


  

Setting this equal to zero and simplifying 

( )
1 1

ˆˆ ˆˆsin 0
p m

i ik i

i k

X y X 
= =

− − =  

 Iteratively, the expected slope parameter can be obtained using Newton-Raphson iteration 

approach.  Assume 0̂  is an early estimate of ̂  and 1̂  is an improvement of 0̂ , estimation 

using the iteration method yields 

( )

( )

0

1 1
1 0

2

0

1 1

ˆˆ ˆˆsin
ˆ ˆ

ˆˆ ˆˆcos

p m

i ik i

i k

p m

i ik i

i k

X y X

X y X

 

 

 

= =

= =

− −

 +

− −




                                        (4) 

 

iii. Parameter estimation for concentration parameter for X  variable 

 The first partial derivatives of Equation (2) with respect to x  is 

( )

( )
( ) ( ) ( )0

1 1 1 10

log
cos cos

p pm m
x

ij i x ij i

i j i jx x

IL
N x X NA x X

I




  = = = =


= − + − = − + −


   

where ( )
( )

( )

( )

( )
0 1

0 0

x x

x

x x

I I
A

I I

 


 


= = , ( )0 xI   and ( )1 xI   are the asymptotic power series for Bessel 

function.  Setting this equal to zero and simplifying 

( ) ( )

( ) ( )

1 1

1 1

ˆˆ cos 0

1 ˆˆ cos

p m

x ij i

i j

p m

x ij i

i j

NA x X

A x X
N





= =

= =

− + − =

 
= − 

 




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The estimation of ˆ
x  can be obtained by using the Dobson’s approximation (Dobson, 1978), 

( )
( )

2
1 9 8 3

8 1

w w
A w

w

− − +
=

−
 

Therefore, 

 1ˆ
x A w −=  where ( )

1 1

1 ˆcos
p m

ij i

i j

w x X
N = =

 
= − 

 
                               (5) 

 

iv. Parameter estimation for concentration parameter for Y  variable 

 The first partial derivatives of Equation (2) with respect to y  is 

( )
( )

( ) ( ) ( )
0

1 1 1 10

'log
cos cos

p pm m
y

ik i y ik i

i k i ky y

IL
M y X MA y X

I


    

  = = = =


= − + − − = − + − −


   

where ( )
( )
( )

( )
( )

0 1

0 0

y y

y

y y

I I
A

I I

 


 


= = , ( )0 yI   and ( )1 yI   are the asymptotic power series for Bessel 

function.  Setting this equal to zero and simplifying 

( ) ( )

( ) ( )

1 1

1 1

ˆ ˆˆ ˆcos 0

1 ˆ ˆˆ ˆcos

p m

y ik i

i k

p m

y ik i

i k

MA y X

A y X
M

  

  

= =

= =

− + − − =

 
= − − 

 





 

The estimation of ˆ
y  can also be obtained by using the Dobson approximation.  Therefore, 

 1ˆ
y A w −=  where ( )

1 1

1 ˆ ˆˆcos
p m

ik i

i k

w y X
M

 
= =

 
= − − 

 
                            (6) 

 

v. Parameter estimation for incidental parameters 

 The first partial derivatives of Equation (2) with respect to iX  is 

( ) ( )
1 1

log
sin sin

m m

x ij i y ik i

j ki

L
x X y X

X
    

= =


= − + − −


   

 Setting this equal to zero and simplifying 

( ) ( )
1 1

ˆ ˆˆ ˆˆ ˆ ˆsin sin 0
m m

x ij i y ik i

j k

x X y X    
= =

− + − − =   

 Assume 0
ˆ

iX  is an early estimate of ˆ
iX  and 1

ˆ
iX  is an improvement of 0

ˆ
iX , estimation of ˆ

iX  using 

the Newton-Raphson iteration method gives 

( ) ( )

( ) ( )

0 0

1 1

1 0
2

0 0

1 1

ˆ ˆˆ ˆˆ ˆ ˆsin sin

ˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆcos cos

m m

x ij i y ik i

j k

i i m m

x ij i y ik i

j k

x X y X

X X

x X y X

    

    

= =

= =

− + − −

= +

− + − −

 

 
                    (7) 
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vi. Variance of the parameters 

The estimated variance of parameters can be determined using several approximations (Hussin et 

al., 2010) and the Fisher information matrix (Satari et al., 2014).  It can be demonstrated that the 

variance of parameters are, 

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( )

2 2

1

2

2

1 1

2 2

2

2

1 1

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ
ˆˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆ
ˆˆ

ˆ ˆ

p

x x y y i

i

p p

x x y y i i

i i

x x y y

p p

x x y y i i

i i

x

x

x

p MA N A X

Var

MA NA p X X

p MA N A
Var

MA NA p X X

Var
M M

    



   

    


   






=

= =

= =

 +
 

=
  

   −       

 +
 

=
  

   −       

=
−



 

 

( ) ( )

( )
( ) ( )

2

2

ˆ ˆ

ˆ
ˆˆ

ˆ ˆ ˆ ˆ

x x x

y

y

y y y y

A MA

Var
N N A NA

  




   

−

=
− −

 

 

4. Simulation Study 

In order to validate the accuracy of the estimation parameters in this suggested model, a Monte Carlo 

simulation analysis was performed.  For each set of simulations, the number of simulations ( s ) is set 

to 5000.  Without sacrificing generality, consider the true values of 4 =  and 1 = , whereas the 

equivalent values of ( ) ( ) ( ) ( ), 5,5 , 10,10 , 15,15
x y

  =  are also considered into the simulation.  The set 

of variables X  was generated using the von Mises distribution ( )4,5X VM  , and the sample size 

50, 100, 200, 500n =  was taken into account for the simulation.   

To simulate the balance-equal replicated environment of circular data, each sample size will be 

grouped through the pseudo-replicate method as shown in Table 1.  Sample size are divided into p

groups.  These groups contain m  elements such that  p m N =  where 
i

m  is the maximum divisor of 

N  such that p m  (Arif et al., 2020a). 

Table 1.  Grouping sample size into their corresponding group 

Sample size ( n ) Number of groups ( p ) Number of members in each groups ( m ) 

50 5 10 

100 10 10 

200 10 20 

500 20 25 
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4.1 Biasness of   

The rotation parameter is classified as a directional parameter.  As a result, three measurements can be 

used to verify ̂ . 

i. Circular mean 

  

1

1

1

tan 0, 0

ˆ tan 0

tan 2 0, 0

S
S C

C

S
C

C

S
S C

C

 



−

−

−

  
  

 
  

= +   
 

  
+    

  

 

    where ( )
1

ˆsin
s

j

j

S 
=

=  and ( )
1

ˆcos
s

j

j

C 
=

=  

ii. Circular distance,  ˆd    = − − −   

iii. Mean resultant length,  ( ) ( )
2 2

1 1

1
ˆ ˆcos sin

s s

j j

j j

R
s

 
= =

   
= +   

   
    

 

4.2 Biasness of ,
x

   and y
  

The slope parameter and concentration parameter are labelled as the continuous parameter for this 

proposed model (Arif et al., 2020a).  By assuming   as a generic term of ,
x

   and y
 , these estimated 

parameters can be verified using these three methods. 

i. Mean,  
1

1
ˆ ˆ

s

j

js
 

=

=    

ii. Estimated bias,  ˆEB  = −   

iii. Estimated root mean square errors,  ( )
2

1

1
ˆ

s

j

j

ERMSE
s

 
=

= −  

 

5. Simulation Result 

The biasness performance indicator is shown in Table 2 for all parameters. The circular mean 

approaches the true value of 4  as the sample size ( n ) for each fixed value   rises, according to 

Table 2.  Similarly, for any fixed  , the estimation of ̂  improves as n  increases because the circular 

distance reduces and approaches zero, while the value of the mean resultant length approaches one. This 

result can also be demonstrated, as seen in Figure 1(a) and Figure 1(b), respectively. Based on these 

simulation findings, it appears that a good parameter estimation was accomplished.
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Table 2: Simulation result for all expected parameters 

  n  

Performance indicator for ̂  Performance indicator for ̂  Performance indicator for ˆ
x  Performance indicator for ˆ

y  

Circular 

Mean 
d  R  Mean EB  ERMSE  Mean EB  ERMSE  Mean EB  ERMSE  

5

5

x

y





=

=
 

50 0.6891 0.0963 0.9335 1.2896 0.2896 1.9384 5.5603 0.5603 1.3310 5.5195 0.5195 1.3252 

100 0.7107 0.0747 0.9679 1.2553 0.2552 1.4270 5.2921 0.2921 0.8336 5.2850 0.2850 0.8652 

200 0.7494 0.0360 0.9871 1.1137 0.1137 1.1087 5.1779 0.1779 0.5688 5.1813 0.1813 0.6036 

500 0.7722 0.0132 0.9974 1.0382 0.0382 0.7521 5.0948 0.0948 0.3598 5.1003 0.1003 0.3646 

10

10

x

y





=

=
 

50 0.7369 0.0485 0.9786 1.1311 0.1311 1.6875 11.2023 1.2023 2.7189 11.1883 1.1883 2.7832 

100 0.7489 0.0365 0.9907 1.1135 0.1135 0.9077 10.6886 0.6886 1.7228 10.7007 0.7007 1.7719 

200 0.7643 0.0211 0.9942 1.0776 0.0776 0.5217 10.4388 0.4388 1.2328 10.4381 0.4381 1.2822 

500 0.7767 0.0087 0.9992 1.0342 0.0342 0.4213 10.2629 0.2629 0.7214 10.2711 0.2711 0.7360 

15

15

x

y





=

=
 

50 0.7563 0.0291 0.9867 1.0745 0.0745 1.0153 16.8072 1.8072 4.0673 16.8399 1.8399 4.2436 

100 0.7643 0.0211 0.9944 1.0880 0.0880 0.6533 16.0213 1.0213 2.5854 15.9848 0.9848 2.6412 

200 0.7710 0.0144 0.9973 1.0625 0.0625 0.4162 15.6492 0.6492 1.7623 15.6859 0.6859 1.8453 

500 0.7778 0.0076 0.9993 1.0310 0.0310 0.1907 15.4053 0.4053 1.0975 15.3968 0.3968 1.1310 
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Figure 1. (a) Circular distance for ̂  and (b) Mean resultant length for ̂  

 

 

Figure 2. (a) Estimated bias for ,ˆ ˆ
x

   and ˆ
y

  (b) ERMSE for ,ˆ ˆ
x

   and ˆ
y

  

 

A similar conclusion may be drawn by referring to Table 2 and focusing on parameter ,ˆ ˆ
x

   and 

ˆ
y

 , where based on these simulation findings, it implies that a good prediction for parameter ,ˆ ˆ
x

   

and ˆ
y

  has also been performed.  As the sample size for each fixed   value increases, the estimated 

bias (EB) and estimated root mean square errors (ERMSE) for ,ˆ ˆ
x

   and ˆ
y

  lessen and approach zero, 

while the mean values for each parameter approach their true value.  These conclusions are further 

supported by Figure 2(a) and Figure 2(b). 

Based on the simulation performances, it is possible to conclude that the suggested model is 

adequate for modelling circular data with very little bias in general.  In contrast to the earlier study of 

replicated functional model by Mokhtar et al. (2017), this proposed replicated linear functional 

relationship model is able to estimate the parameters without having to assume the ratio of the error 

concentration parameter and it considers all parameters involved 
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6. Application to Wind Direction 

The applicability of the suggested model in this research can be demonstrated by using wind direction 

data gathered from the Humberside shore of the North Sea in the United Kingdom.  With a sample size 

of 120, the wind direction data acquired by the HF radar system created by UK Rutherford and Appleton 

Laboratories is treated as the variable ij
x .  Meanwhile, the variable 

ik
y  represents wind data collected 

by an anchored wave buoy.   

To apply the balance-equal replicated linear functional relationship model to these data, the data 

will be replicated based on the period of data collection and grouped into 10 different groups, each with 

12 members to generate the balance-equal replicated data.  The data will next be simulated into the 

proposed model.   

 

 

Figure 3. Scatter plot of HF radar (x) and anchored buoy (y) 

 

The underlying link between the variables ij
x  and 

ik
y  based on the simulation results is given by 

( )(Anchored Buoy) 0.0367 0.9927(HF Radar) mod2= + , where ( )0, 5 4593.
ij

VM  and 

( )0, 4 4011.
ij

VM .  It is worthwhile to note that the variance values of   and   are small, where 

( ) 0.0145ˆˆVar  = , ( ) 0.0008ˆˆVar  = , this implying the values are close to the mean. Bigger 

dispersions are obtained for the concentration parameters of the model with values  ( ) 0.4557ˆˆ
x

Var  =  

and ( ) 0.2905ˆˆ
y

Var  =  respectively.  
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7. Conclusion 

The balance-equal replicated linear functional relationship model with replicated circular variables is 

proposed in this paper where all the available parameters are derived using the maximum likelihood 

According to the Monte Carlo simulation study, parameter estimation provides a good and consistent 

estimate since the mean of predicted estimation is close to the true value and the bias decreases as the 

concentration parameter is fixed and the sample size increases.  The Variance-Covariance matrix of the 

estimated parameters can be constructed using various approximations and the Fisher Information 

matrix. 

The model was applied to real data obtained from Holderness Coastline by examining the 

relationship of wind direction using two separate metrics (HF radar system and anchored wave buoy). 

It is discovered that the proposed model captures the underlying relationship between the measurement 

of two circular variables without relying on the ratio of concentration parameter and by replicating the 

data into balanced and equal replicated data. 
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