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Abstract 

This research presents a class of nonlinear split plot design (SPD) model where the mean function of 

the SPD model is not linearizable. This was done by fitting intrinsically nonlinear split-plot design 

(INSPD) model using Bertalanffy-Richards function. Estimated Generalized Least Square (EGLS) 

technique based on Gauss-Newton with Taylor series expansion by minimizing the model objective 

function was used for estimating the fitted INSPD model parameters. The variance components for the 

whole plot and subplot random effects are estimated using Restricted Maximum Likelihood Estimation 

(REML) and Maximum Likelihood Estimation (MLE) techniques. These techniques are established and 

paralleled with Ordinary Least Square (OLS) technique for a balanced 31 x 42 replicated mixed Level 

SPD data from Institute of Agricultural Research, Ahmadu Bello University, Zaria. The adequacy of the 

estimated INSPD model parameters for the EGLS and OLS are compared using four median adequacy 

measures. They are resistant coefficient of determination, resistant prediction coefficient of 

determination, resistant modeling efficiency statistic, and median square error prediction statistic. Also, 

Akaike’s information criterion, corrected Akaike’s information criterion, and Bayesian information 

criterion are used to select the best parameter estimation technique. The results obtained showed that 

the Bertalanffy-Richards SPD model via EGLS-REML fitted model is a good fit that is adequate, stable 

and reliable for prediction compared to EGLS-MLE and OLS techniques.   
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1. Introduction  

Split-plot design (SPD) of experiment has since been used in all aspect of agricultural experiments as 

introduced by Sir R. A. Fishers in 1925 and in the industry too as a linear model (Wang, Kowalski & 

Vining, 2009; Myers, Montgomery, & Anderson-Cook 2009; Jones & Nachtcheim, 2009; Lu, Anderson-

Cook, & Robinson, 2011; Lu & Anderson-Cook, 2012; Lu, Anderson-Cook & Robinson, 2012; Jones 

& Goos, 2012; Lu & Anderson-Cook, 2014; Anderson & Whitcomb, 2014; Lu, Robinson, & Anderson-

Cook, 2014; Anderson, 2016; Kulahci & Menon, 2017; Huameng, Fan & Lei, 2017). However, 

intrinsically nonlinear SPD (INSPD) modeling has received little attention. This class of model has 

parameters that are not linearizable. Since the SPD has two sources of random variations, [whole plot 

error (WPE) and subplot error (SPE)] traditional nonlinear regression will not be suitable because it 

cannot handle more than one random error variation. If wrongly used the single mean square error 

(MSE) produced will be a compromise between the WPE and SPE variances (Gumpertz & Rawlings, 

1992; Knezevic et al., 2002; Blankenship et al., 2003). Gumpertz & Rawlings (1992) fitted and 

estimated the parameters of a Weibull unbalanced SPD of experiment for the effect of ozone (O3) 

exposure (whole plot [WP] treatment I) on soybean yield at two watering regimes (WP treatment II) on 

thirty chambers arranged in three randomized blocks (each block has 10 chambers). Two cultivars (SP 

treatments) are within each chamber where the soybean are grown. Knezevic et al. (2002) and 

Blankenship et al. (2003) modelled the WP and subplot [SP] effect of three nitrogen rates on “critical 

period for weed control” (CPWC) in corn yield using Logistic and Gompertz functions. Theoretical 

presentation on intrinsically nonlinear SPD modelling has been given by Gumpertz, & Pantula (1992), 

David et al. (2018) and David et al. (2019). 

There have been extensive use of the Bertanlanffy-Richards function (BRF) in modeling growth 

process. For instance Hazarika et al. (2020) used the BRF to study growth pattern of the height and 

width of Indian Bamboo (Bambusa Tulda) and they found the BRF to fit their data well. Similarly, other 

researchers have applied BFR in modeling the growth of crops, animals, birds and other organisms in 

terms of length of growth, body size, yield, weight and height (Tariq et al., Bashiru et al., 2020, Lee et 

al., 2020, and Tekel et al., 2020).  

In this research a balanced INSPD modeling is presented. The WP and SP are modeled using a 

three-parameter Bertanlanffy-Richards function with fixed block effect. The variance covariance 

matrix, V is estimated using restricted maximum likelihood (REML) technique for estimated 

generalized least square (EGLS) where results obtained are compared to estimates from maximum 

likelihood estimation (MLE) for EGLS and ordinary least square (OLS) of the fitted model. All fitted 

models are assessed for goodness of fit using information criteria and median adequacy measures 

(MAM) by David et al. (2016) and David et al. 2020. 
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2. Materials and Methods  

In this section we present the NSPD models and a theoretical structure for estimating the parameters of 

the models using an iterative Gauss-Newton procedure with Taylor series expansion. The INSPD model 

which has WPE and SPE are special case of nonlinear model with random effects (also called nonlinear 

model with V that is, WPE and SPE). The formulated model and assumptions are given as follows. 

 Let 

  ( )ijk i j ij k jk ijkY w     = + + + + + +        (1)  

be the linear SPD model with two factors A and B. The corresponding NSPD model is given as follows. 

(  )ijk ijk ij ijky f x , w = + +         (2) 

where, ijky  is the response variable; i = 1, ..., s replicates (Reps) or block; j = 1, ..., a levels of the WP 

factor A; k = 1, ..., b levels of the SP factor B; ijw  is the WP error and ijk  is the SP error; (  )ijkf x ,  is 

the nonlinear function for the mean describing the relationship of fixed main and interaction effects to 

the response ijky . The parameters Reps, A and B are assumed fixed. 

Assumption 1: it is presumed that the WPE and SPE are random effects. Also, it is assumed that 

2(0 )WP

i.i.d .

ijw N ,~   and 2(0 )SP

i.i.d .

ijk N ,~  . 

Assumption 2:  Let ̂  be the model parameter estimate of θ which follows an asymptotic normal 

distribution with mean   and variance 2 1( ) −F F , where F is the n × u matrix with elements 

( )( )ijkf x ,     where the columns, u of the matrix is a full rank.  

Assumption 3: if the number of parameters in the mean function, (  )ijkf x ,   is p and the number of 

random effects is r, then the number of measurements in the data set, n, must be at least p + r +1 in 

order to estimate all of the parameters. This implies that n ≥ p + r +1. 

2.1  Split-Plot Model with Bertalanffy-Richards Function as the Mean Curve 

The mean curve, (  )ijkf x ,   in equation (2) is substituted with the Bertalanffy-Richards function (BRF). 

The BRF used for this research is a three-parameter function. 

 Let (  )ijkf x ,   be a BRF. Therefore, 

( )(  ) 1 ( )ijk ijk ijkf x , exp x


  =  −        (3)

  

where ijk  is the asymptote and it is tailored as ( )ijk i j k jkRep A B AB = + + + + . Hence, equation (3) 

can be rewritten as follows. 

( )(  ) ( ) 1 ( )ijk i j k jk ijkf x , Rep A B AB exp x


   = + + + + −      (4) 

The SPD model with the BRF as the mean curve is therefore given as follows. 
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( )( ) 1 ( )ijkl i j k jk ijk ij ijky Rep A B AB exp x w


   = + + + + − + +     (5) 

where  is the average yield at zero rate or dose, Repi is the ith replicate or block, Aj is the effect of the 

jth levels of factor A, Bk is the effect of the kth levels of factor B, ( ) jkAB  is the jth and kth levels 

interaction effect of the factors A and B respectively, ijkx  is the mean covariate effect in the ith replicate 

at the jth factor A and kth factor B,   and   are the Weibull scale and shape parameters respectively, 

ijw  is the WP error and ijk  is SP error. 

2.2  Method of Estimated Generalized Least Square (EGLS)    

When the covariance matrix of y is known then the GLS estimator, GLS̂ , is found by minimizing the 

objective function (Gumpertz & Rawlings, 1992; David et al., 2019) 

( ) ( )1(  ) (  )
t

y f X , y f X , −− −V         (6)

  

with respect to  , where V is a known positive definite (non-singular) covariance matrix which arises 

from the model 

  (  )ijk ijk ij ijky f x , w = + +         (7) 

where, E( ijw ) = 0, Cov( ijw ) = 2
Nw I , E( ijk ) = 0 and Cov( ijk ) = 2

N I .  

Let the V matrix of the observations var(y) be written as 

  V = 2
NIw  + 2

NI  

      = 2 I . 

By Cholesky decomposition, multiply model (7) by J˗1 on both sides yield that 

  1 1 1 1J  J ( )  J ( )  J ( )ijk ijk ij ijky f x , w − − − −= + +       (8)  

Define Tijk = 1J ijky− , ( )ijkx ,M = 1J ( )ijkf x ,−  and ijk  = 1 1J ( )  J ( )ij ijkw − −+ . Then equation (8) 

becomes 

Tijk = ( )ijkx ,M  + ijk         (9)  

where, E( ijk ) = 0 and V( ijk ) = 2 I . Thus the GLS model has been transformed to an OLS model. 

Hence, model (9) is to be solved using the OLS technique as follows. 

Taking the summation of both sides of (9) and squaring we have   

22 ( )
s a b s a b

ijk ijkijk

i j k i j k

x ,  = −    T M       (10) 

Let L(θ*) = 
22 ( )

s a b s a b

ijk ijkijk

i j k i j k

x ,  = −    T M           

minimize L(θ*) w.r.t. θ*, equate to zero and divide through by – 2  we have, 
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(  )( )
(  ) 0

s a b *
ijk*

ijk ijk* *
h h ˆi j k

x ,L
x ,

 




 
 



=

 
 = −  =     


M

T M      (11) 

At this point, equation (11) has no closed form hence will be solved iteratively using the Gauss-

Newton method with Taylor series expansion of (  )ijkx , M  at first order (see David et al., 2019). 

Equation (12) is obtained  

0 0( ) ( )* D     = +         (12)  

where 0D  is the N×H derivative matrix with elements { ijkd } at h iterations and this is equivalent to 

approximating the residuals for the model, that is, ( ) ( )    = −T  by 

0 0( ) ( )* D      = − + T  

                    = 0 0( )* D  − −T        

                    = 0 0z D −         (13)  

where 0z  = 0( )* −T  and 0
*  = − . 

To achieve numerical stability of the parameter estimates D0 is decomposed using QR (Q is an 

orthogonal matrix and R is an inverted or upper triangular matrix) decomposition into the product of an 

orthogonal matrix and an inverted matrix (Klotz, 2006; David et al., 2019). A point 

1 1 0 0( ) ( )* *̂     = = + should now be closer to y than 0( )*  , and then move to an improved parameter 

value 1 0 0
* *  = +  and perform another iteration by calculating new residuals 1z  = 1( )* −T , a new 

derivative matrix 0D , and a new increase. This process is reiterated until convergence is achieved, that 

is, until the increment is so small that there is no useful modification in the elements of the parameter 

vector (David et al., 2019). A small step in the direction 0  is introduced if the new value is not small 

as projected. A step factor   is introduced such that 1 0 0
* *  = +  where   is chosen to ensure that the 

new residual sum of squares is less than the initial estimate. As suggested by David et al. (2019) it is to 

start with  = 1 and halve it until it is satisfied that the new residual sum of squares is less than the 

initial estimate.  

 

2.3  Variance Component Estimation Via REML 

The REML system does not embrace  ̂   in the estimation of V. The log-likelihood function is based 

on vectors in the error space. To obtain these vectors in the error space the linear approximation of the 

residuals is used 0 0z D  = + . To derive V from the nonlinear functions of y that will not embroil  ̂  , 

vectors of the form t K y  are fashioned whereby K is chosen so that t
0 K 0D =  which falls in the linear 

approximation to the error space. K is a full rank matrix satisfying 0K 0
t =D  and smearing maximum 

likelihood to ytK , the log likelihood function of t K y , is 

 ( ) ( )( )t t t1 1
ln ln (2 ) ln K K K K  

2 2 2

tn
L π y f X , = − − − −Θ  V  
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    ( ) ( )( )
1

t t tK K K K  y f X , 
−

 − V        (14) 

where ( )2 2
t

t
WP SP, =Θ , is then approximated by the surface and equation (14) becomes, 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( )

1
t t t t t t

1 1
t t t t t t t

1
t t t t t

1 1
ln ln (2 ) ln K K K K ( ) K K K K ( )

2 2 2

1 1
ln K K K K ( ) K K K K ( ) K K

2 2

1 1
ln K K K K ( ) K K K

2 2

t

t

t

n
L π y f x, y f x,

C y f x, y f x,

C y f x, y

 

 



−

− −

−

= − − − − −

= − − − −

= − − −

Θ  V  V 

 V  V  V 

 V  V 

 ( ) ( )( )1
t t t t1

K K ( ) K ( ) K K
2

t
y f x, f x, 

−
+ −  V        (15) 

By matrix algebra on the third and fourth terms of equation (15) respectively by inserting 

2

2 2

1

t t

i i i

i

K K 
=

= = V I I I and ( )( ) ( )( ) ( ) ( )
1 1

1 2 2K K K K K K K K Q Qt t t t

h h j 
− −

− = = = =VV V V V V I V . 

Then differentiate partially the outcome w.r.t 2
i  and equate to zero equation (15) becomes 

  ( )( ) ( )
1 1

Q Q Q
2 2

t

h i h i htr y y=V V         (16) 

Multiply the left hand side of equation (16) by VV-1 we have  

  ( )( ) ( ) ( )2

( 1)

1 1
Q Q Q Q

2 2

t

h i j h h j h i htr y y + =V V V       (17) 

  ( ) ( )( ) ( )( ) ( ) ( )( )2

1
  h i h j h i hj h

ˆ ˆ ˆ ˆˆ ˆ ˆˆtr y y
+

 = tQ V Q V Q V Q      (18) 

  
( )( ) ( ) ( )( ) ( ) ( )( )

1
2

1
  i j ih h h hj h

ˆ ˆ ˆ ˆˆ ˆ ˆˆ tr y y
−

+
=  tQ V Q V Q V Q      (19) 

The solutions to the equations may turn out to be negative when further iteration does not improve the 

log-likelihood. In such a case, the negative value is changed to zero before the next iteration. 

 

2.4  Median Adequacy Measure (MAM) Statistics 

Four proposed Median Adequacy Measure (MAM) statistics for assessing the adequacy of linear SPD 

models (David et al., 2016) are used for this research to assess the adequacy of the fitted INSPD models. 

The four statistics used are resistant coefficient of determination (
2

rr ) proposed by Kvalseth (1985), 

resistant prediction coefficient of determination (Pred-
2

rr ), Resistant Modeling Efficiency (RMEF) and 

Median Square Error Prediction (MedSEP). Procedures for calculating the WP and SP respective 

models residuals are given by Almimi et al. (2006) and David et al. (2016). These statistics are called 

resistant due to their ability of withstanding outliers or extreme values and not to increase or decrease 

unnecessarily when a variable is added or removed from the original model (David et al., 2020). The 

four statistics are presented as follows. 
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2.4.1  Resistant Coefficient of Determination (
2

rr ) 

The statistic to calculate the WP and SP 
2

r
r values are as follows:   

  
( )

( )
2 1
( )

1

2

1

n

i WPi
nr wp

i
WPi

M

M Y Y
r


=

=
−

= −
 
 
 

       (20) 

  
( )

( )
1

1

2

2
( ) 1

n

i
SPi

n

i
SPi

M

r sp
M Y Y

r


=

=
−

 
 = −
 
 

      (21)  

where M is the median of the absolute values from i = 1 to n and ie  is the fitted models residuals. The 

statistic (20 and 21) above uses the median instead of the mean in obtaining a coefficient of 

determination value that is highly resistant to outliers as proposed by Kvalseth (1985), 0 ≤ 
2

rr ≤ 1. 

However, for nonlinear models the coefficient of determination value can be negative when the fit is 

worse, that is, -1 ≤ 
2

rr ≤ 1. 

 

2.4.2  Resistant Prediction Coefficient of Determination (Pred-
2

rr )                                  

The statistic to calculate the WP and SP Pred-
2

rr values are as follows:   

 ( )
( ) ( ) ( )

2 2
2

1 11
1 i

ii

en n
WP r i WP WPi ih

WP

Pr ed r M M Y Y
−

= =−

    − = − −        
      (22) 

 ( )
( ) ( ) ( )

2 2
2

1 11
1 i

ii

en n
SP r i SP SPi ih

SP

Pr ed r M M Y Y
−

= =−

    − = − −        
      (23)  

where M is the median of the squared values from i = 1 to n, ie  is the residual, iih  is the hat matrix and 

1 ≤ 2
rredPr − ≤ 1. However, for nonlinear models the prediction coefficient of determination value 

can be negative when the fit is worse, that is, -1 ≤ 2
rredPr − ≤ 1.    

 

2.4.3  Resistant Modeling Efficiency (RMEF) 

The statistic to calculate the WP and SP RMEF values are as follows: 

 
( )

( )

2

1

1

RMEF 1

n
i i i p i WP

WP
n
i i

WP

M Y f X ..., X

M Y Y

=

=

−

= −
−

  
  

 
 

      (24) 

   
( )

( )

2

1

1

RMEF 1

n
i i pi i SP

SP
n

ii
SP

M Y f X ...,X

M Y Y

=

=

  −
   

= −  
− 

 

     (25) 

where M is the median of the absolute values from i = 1 to n and ( )i p if X ...,X  is the model-predicted 

values. In a perfect fit RMEF would result in a value equal to one. The upper bound is one and the 



Journal of Statistical Modeling and Analytics  Vol 4(1), 56-71. 2022 
 

63 
 

(theoretical) lower bound is negative infinity (– ∞ < RMEF ≤ 1). 

 

2.4.4  Median Square Error Prediction (MedSEP) 

The statistic to calculate the WP and SP MedSEP values are as follows: 

 ( ) ( )
2

1

1
n

WP i i piWP i WP
MedSEP n M Y f X ...,X

−

=
  = −    

      (26) 

 ( ) ( )
2

1

1
n

SP i i piSP i SP
MedSEP n M Y f X ...,X

−

=
  = −    

      (27) 

where M is the median of the absolute values from i = 1 to n and 
ipi XXf )...,(  is the model-predicted 

values. A model with the smallest MedSEP value is termed as more adequate. 

 

2.5  Information Criteria Statistics 

In this research, Akaike’s Information Criteria (AIC), Corrected AIC (AICC) and Bayesian Information 

Criteria (BIC) are used for testing the goodness of fit of the models and to complement the results 

obtained from MAM. The statistic for each criterion is given as follows. 

AIC = ( )2 2ˆf p +         (28)  

AICC = ( ) 2
2

1

npˆf
n p

 +
− −

       (29) 

BIC = ( )2 log( )ˆf p s +         (30) 

where f () is the negative of the marginal log-likelihood function, ̂  is the vector of parameter estimates, 

p is the number of parameters, n is the number of observations and s is the number of subjects. 

 

2.6  Experimental Data and Analysis Procedure  

The data used for this research is a balanced 31 x 42 replicated mixed Level SP experimental design data 

is used. The WP has two factors which are irrigation and rice varieties. The irrigation was administered 

three different times, 7 days, 14 days and 21 days on four different rice varieties, NERICA 2, NERICA 

3, NERICA 4 and NERICA 14. The SP factor is nitrogen fertilizer and it was administered at four 

different rates, 30kg N ha-1, 60kg N ha-1, 90kg N ha-1 and 120kg N ha-1 on each of the four varieties of 

rice. The aim of the field trial was to determine irrigation effect on the yield of rice. The research was 

conducted by Institute of Agricultural Research, Ahmadu Bello University, Zaria, at their experimental 

field station in Kano State, Nigeria. The procedures for analysis are as follows. 

1. Performed a traditional SP experimental design analysis. This was done to see which of the 

effects are significant because only the significant effects will be included for the main 

nonlinear model. Another reason is to avoid unnecessary inclusion of factors in the model and 

to decrease the number of parameter estimates. To achieve this step using SAS software, the 

Proc Mixed code is used. 
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2. After identifying the significant effects, a reanalysis is performed to obtain the parameter 

estimates in terms of regression model. The reason is the size of parameters to be estimated will 

be too large for meaningful nonlinear modeling and as well interpretation of results. At this 

stage, the main effects, and their significant interaction effects, the WP and SP V are estimated 

using the MLE and REML methods as implemented in SAS software through Proc Mixed. A 

total of 11 parameters are estimated including the asymptote, scale and shape parameters. These 

parameter estimates are used as initial values for the main NSPD models under study. 

3. The asymptote, shape and scale parameters for each of the nonlinear functions used for 

remodeling the traditional SPD model where estimated using Proc Nlin code in SAS. 

4. The 11 parameter estimates are used as initial estimates for the nonlinear models formulated in 

this research. The SAS Proc Nlmixed code is used at this stage of the research to obtain the 

results for EGLS. While the Proc Nlin code is used for obtaining the OLS results. 

5. The residuals obtained from each fitted NSPD models are used to calculate all four median 

adequacy measures introduced in the research for assessing the adequacy of each fitted models 

so as to identify which model is a better adequate model. 

 

3. Results and Discussion 

Table 1 and Table 2 below present the analysis of variance tables. Table 1 shows that all main effects 

and two factor interaction effects are significant at 5% significance level since their respective p-values 

are all less than 5%. However, the three factors interaction effect is not significant because its p-value 

of 0.1271 is greater than 5% significance level. Based on the outcome of the analysis, the three factor 

interaction effect is removed and a reanalysis is performed. Table 2 presents the reanalysis which is a 

regression SPD analysis results. It was adopted to reduce the large treatments combinations from 48 to 

11.  

 

 

 

Table 1. A 3×42 Split-Plot Design ANOVA Table 

Source DF Sum of Square Mean Square F Value Pr > F 

Rep 1 17.1653420 17.1653420 2.87 0.1184 

I 2 742.9498466 371.4749233 62.08 <.0001 

V 3 118.0203278 39.3401093 6.57 0.0083 

I*V 6 113.7322231 18.9553705 3.17 0.0467 

WP Error 11 65.8244525 5.9840411   

N 3 198.1498628 66.0499543 22.00 <.0001 

I*N 6 156.6209531 26.1034922 8.69 <.0001 

V*N 9 187.8973217 20.8774802 6.95 <.0001 
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I*V*N 18 84.0821159 4.6712287 1.56 0.1271 

SP Error 36 108.099063 3.002752     

Total 95 1792.541509 
   

 

Table 2. A 3×42 Regression Analysis with Split-Plot Errors ANOVA Table 

Source DF Sum of Square Mean Square F Value Pr > F 

Rep 1 412.51782 412.5178 26.96 <.0001 

I 1 342.730368 342.7304 22.4 <.0001 

V 1 290.551364 290.5514 18.99 <.0001 

I*V 1 0.391008 0.391008 0.03 0.8734 

WP Error 1 248.383603 248.3836 
  

N 1 799.986622 799.9866 52.28 <.0001 

I*N 1 407.134252 407.1343 26.61 <.0001 

V*N 1 27.35356 27.35356 1.79 0.1847 

SP Error 88 1346.558516 15.3018 
 

  

Total 95 3875.607113 
   

 

The results show that all the main effects and interaction effects are significant at 5% 

significance level except for I*V (Irrigation by variety) and V*N (variety by nitrogen) interaction 

effects. This is because I*V and V*N respective p-values are greater than 5%. However, these two 

interaction effects are not plunged for further analysis because their respective main effects (I, V and 

N) are all significant at 5% level of significance. The covariance components estimates for the WP and 

SP are obtained based on this final regression analysis with SP errors. The two methods adopted for 

estimating the covariance components for this research are MLE and REML techniques. Table 3 

presents their respective results.     

Table 3. Covariance Parameter Estimates 

Parameter MLE REML 

2
  0 0.01648 

2
  16.614 15.3018 

The VC estimates presented in table 3 above shows that the WP variance estimate for MLE is 

zero which is smaller than the estimates from REML (0.01648). However, for the SP variance estimate, 

the MLE estimate (16.614) is larger than the estimates from REML (15.3018). 

Table 4 presents the Bertalanffy-Richards SPD model parameter estimates, standard errors and P-values 

from the OLS and EGLS-MLE and EGLS-REML.  



Journal of Statistical Modeling and Analytics  Vol 4(1), 56-71. 2022 
 

66 
 

Table 4: Bertalanffy-Richards Split-Plot Design Model Parameter Estimates 

Parameter OLS EGLS 

(MLE) 

EGLS 

(REML) 

Std. Error 

a 

Std. Error 

b 

Std. Error 

c 

P-value a P-value 

b 

P-value c 

0  31.9390 29.0865 28.3639 47.3177 6.5597 2.7898 0.5013 <.0001 <.0001 

1  2.0587 0.9095 0.3935 3.2736 0.5781 0.6278 0.5309 0.119 0.5322 

2  -1.3165 -0.7443 -0.7994 2.6220 1.1689 1.5459 0.6168 0.5258 0.6063 

3  0.1809 0.05905 0.2146 0.2865 0.03983 0.07851 0.5293 0.1415 0.0075 

4  -0.1208 -0.01086 -0.03419 0.2145 0.06536 0.08182 0.5746 0.8684 0.677 

5  -0.01252 -0.00379 -0.01289 0.01955 0.002291 0.004147 0.5236 0.1014 0.0025 

6  0.04049 0.01641 0.02241 0.06339 0.008079 0.008382 0.5245 0.045 0.0088 

  -251E-17 -0.03399 -0.3503 0 0.1464 0.1287 <.0001 0.8169 0.0077 

  0.02946 0.08134 15.3236 0.04714 0.1574 13.4821 0.5335 0.6065 0.2585 

2ˆ
  13.4165 5.1112 49.363 0.1378 3.7457 15.5941 <.0001 0.1756 0.0021 

2ˆ   1.4504 6.0407 5.6774 0.04987 1.0725 0.7883 <.0001 <.0001 <.0001 

Letters a, b and c represents OLS, EGLS (MLE) and EGLS (REML) respectively. Bold values imply significance at 5%. 

It is seen from table 4 that the parameter estimates obtained from OLS estimation technique 

and EGLS via MLE and REML estimation techniques are quite similar except for the shape and whole 

plot variance parameter estimates. However, the model mean estimates, 31.9390, 29.0865 and 28.3639 

respectively from the three techniques, OLS, EGLS via MLE and EGLS via REML are not much 

different from each other but their respective p-values of 0.5013, 0.0001 and 0.0001 shows that only 

the OLS mean estimate is not significant at 5% significance level. However, the replicate parameter 

estimates of 2.0587, 0.9095 and 0.3935 with p-values of 0.5309, 0.119 and 0.5322 for OLS and EGLS 

via MLE and REML respectively are not significant at 5% significance level. Similarly, the variety 

parameter estimates of -1.3165, -0.7443 and -0.7994 with p-values of 0.6168, 0.5258 and 0.6063 for 

OLS and EGLS via MLE and REML respectively are not significant at 5% significance level. However, 

for nitrogen fertilizer effect parameter estimates of 0.1809, 0.05905 and 0.2146 with p-values of 0.5295, 

0.1415 and 0.0075 for OLS and EGLS via MLE and REML respectively shows that only EGLS via 

REML estimate is significant at 5% significance level. 

Also, I*V interaction parameter estimates from OLS (-0.1208) and EGLS via MLE (-0.01086) 

and REML (-0.03419) are not significant because their p-values of 0.5746, 0.8684 and 0.677 are all 

greater than 5% significance level. However, I*N interaction parameter estimates of -0.01252, -0.00379 

and -0.01289 with p-values of 0.5236, 0.1014 and 0.0025 from OLS and EGLS via MLE and REML 

respectively indicates a significant estimate from EGLS via REML only at 5% significance level. Also, 

V*N interaction effect parameter estimates of 0.04049, 0.01641 and 0.02241 with p-values of 0.5245, 

0.045 and 0.0088 from OLS and EGLS via MLE and REML respectively shows that only the OLS 
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estimate is not significant at 5% significance level.     

The OLS estimates for scale parameter (ω) of -251E-17 is smaller compared to the EGLS 

estimates via MLE (-0.03399) and REML (-0.3503). Their respective p-values of 0.0001, 0.8169 and 

0.0077 indicate that the EGLS via MLE scale parameter estimate is not significant since its p-value is 

greater than 5% significance level. However, the shape parameter (λ) estimates from OLS (0.02946) 

which is smaller than that of the estimates from EGLS via MLE (0.08134) and REML (15.3236) but 

their respective p-values of 0.5335, 0.6065 and 0.2585 implies that the shape parameter estimates are 

not significant at 5% significance level. 

The final whole plot variance component ( 2ˆ  ) parameter estimate of 49.363 from EGLS via 

REML is larger than the OLS estimate of 13.4165 and EGLS via MLE estimate of 5.1112. However, 

the OLS and EGLS via REML estimates are both significant because their p-value of 0.0001 and 0.0021 

are less than 5% significance level. But, the EGLS via MLE p-value of 0.1756 is not significant at 5% 

significance level. While the split-plot variance component estimate ( 2ˆ  ) from OLS (1.4504) is also 

smallest compared to the EGLS via MLE (6.0407) and REML (5.6774) estimates. However, their p-

values of 0.0001 respectively indicate a significant split-plot variance component parameter estimate at 

5% level of significance.  

Generally, the standard errors for each of the estimates from the OLS, EGLS-MLE, and EGLS-

REML in Table 4 shows that the EGLS via MLE and REML produced similar standard errors compared 

to the OLS technique parameter estimates standard errors. Conversely, for the model scale parameter 

and whole plot variance component parameter estimates where the EGL-REML technique produced the 

largest values compared to the EGLS-MLE and OLS as well. This gives a pre-confirmation that either 

the EGLS via MLE or REML estimates for Bertanlaffy-Richards SPD model are estimated adequately 

with better stability. Hence, one of EGLS via MLE or REML techniques is more efficient than the OLS 

technique. The OLS, EGLS-MLE and EGLS-REML estimated fitted models for the BRSPD model are 

presented as follows. 

 31 939 2 0587 1 3165 0 1809 0 1208 0 01252 0 04049ijkly . . Rep . V . N . IV . IN . VN= + − + − − +  

                    ( )
0 02946

1 (-251E-17 )
.

exp I −        (35) 

 29 0865 0 9095 0 7443 0 05905 0 01086 0 00379 0 01641ijkly . . Rep . V . N . IV . IN . VN= + − + − − +  

                    ( )
0 08134

1 (-0.03399 )
.

exp I −         (36) 

 28 3639 0 3935 0 7994 0 2146 0 03419 0 01289 0 02241ijkly . . Rep . V . N . IV . IN . VN= + − + − − +  

                     ( )
15 3236

1 (-0.03399 )
.

exp I −         (37) 

Table 5 below shows that the 2
rr , 2

rPred-r , RMEF and MedSEP values for the OLS, EGLS-MLE 

and EGLS-REML estimated fitted BRSPD Models are similar for the WP and SP sub models. However, 
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it can be seen that the EGLS-REML have the largest 2
rr  values of 99.99979% and 83.91%, 2

rPred-r  

values of 99.999758% and 75.5%, and RMEF values of 99.9997% and the smallest MedSEP values of 

2.76E-12 and 0.027643 for the WP and SP sub models respectively. This implies that the EGLS-REML 

estimated fitted BRSPD model has a larger proportion of variability explained in the data, better 

prediction power, more efficient and better error prediction strength for the WP and SP sub models by 

their respective factors, I, V and N. However, the WP sub design model have larger 2
rr , 2

rPred-r  and 

RMEF values compared to the SP sub design model and the MedSEP values for the WP sub design 

model is smaller compared to the SP sub design model for all the OLS, EGLS-MLE and EGLS-REML 

estimated fitted BRSPD model. 

 

Table 5. Median Adequacy Measures Results 
 

2
rr  2

rPr ed r−  RMEF MedSEP 

 
WP SP WP SP WP SP WP SP 

OLS 0.9934546 0.7286645 0.99259238 0.586442 0.999665 0.779233 2.59E-05 0.078609 

MLE 0.999686 0.7776782 0.99964469 0.661147 0.992581 0.73505 5.97E-08 0.052775 

REML 0.9999979 0.8390977 0.99999758 0.75476 0.999997 0.840852 2.76E-12 0.027643 

However, Table 6 below presents the goodness of fit results for the fitted models and it showed 

that EGLS-REML produced the lowest AIC, AICC and BIC values of 483.7, 486.8 and 473.8 

respectively. This implies that the EGLS-REML estimation technique produces reliable and stable 

estimates compared to EGLS-MLE and OLS parameters estimates. 

Table 6. Model Goodness of Fit Test Results 

Method AIC AICC BIC 

OLS 496.4 499.5 524.6 

MLE 487.5 490.6 477.6 

REML 483.7 486.8 473.8 

 

 

4. Conclusion 

Based on the research results from the analysis on a balanced 31 x 42 replicated mixed Level SP 

experimental design data, it was observed that the fitted BRSPD model is a good fit for the EGLS-

REML estimated model. This is because all the four MAM for assessing the adequacy of the fitted 

model produced larger 2
rr , 2

rPred-r  and RMEF values and smaller MedSEP values for the WP and SP 

sub models and as well smaller AIC, AICC and BIC values compared to the EGLS-MLE and OLS 

estimated models respectively. Also, all the respective OLS, EGLS-MLE and EGLS-REML estimated 

fitted INSPD models for the WP sub models produced better adequacy measure values compared to the 

SP sub models. However, the OLS, EGLS-MLE and EGLS-REML respective parameter estimates 
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standard errors showed that the EGLS-REML parameter estimates are quite stable and reliable because 

of its comparable small standard errors values with that of EGLS-MLE and OLS standard errors 

estimates. Also, seven out of the eleven parameter estimates for the EGLS-REML were significant at 

5% significance level compared to OLS fitted model with only three significant parameters and none 

for EGLS-MLE. Therefore, it can be concluded that the EGLS-REML fitted model is a good fit that is 

adequate, stable and reliable for prediction. 
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