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Abstract 

In this paper, the Extended Exponentiated Exponential distribution was developed from the New Extended 

Exponentiated-G family of distributions. Some mathematical properties of the newly derived distribution 

such as moment, moment generating function, quantile function, hazard function, survival function, odd 

function, distribution of order statistic and maximum likelihood estimation were all derived. An acceptance 

sampling plan based on truncated life tests was also developed for the distribution. The minimum size, 

operating characteristic function values and minimum ratio of the sampling plan required to confirm the 

specified mean life are also presented. Data from 20 electric carts lifetime (months) utilized by a 

manufacturing company for delivery and domestic transportation services was used to illustrate the results. 

A comparison study with different sampling plans and distributions by earlier authors is also carried out to 

demonstrate the advantage of the new plan over existing plans. The findings revealed that the proposed 

plan is better and can be conveniently useful by researchers and Quality Control Personnel in product 

acceptance sampling inspection. 

 

Keywords: Consumer's risk; Exponentiated Exponential; Operating characteristic function; Producer's 

risk; Truncated life test. 

 

1. Introduction 

Several generalized distributions have recently been developed with applications in health sciences, 

environmental science, engineering, and finance, among other domains. These applications show that the 

number of data sets with classical distributions is usually more rare than common. As a result, 
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statisticians have made tremendous progress toward generalizing classical distributions and successfully 

applying them in applied areas. 

For many years, researchers have been creating families of distributions, which are typically used to 

develop compound distributions. These compound probability distributions are predicted to be more 

flexible than existing ones and to suit data better. Some notable families of distribution are Topp Leone 

Kumaraswamy-G by Ibrahim et al. (2020), The Kumaraswamy-G by Cordeiro and Decastro (2011), Topp 

Leone-G by Al-Shomrani et al. (2016), Odd Lindley-G family by Gomes-Silva et al. (2017), Gompertz-G 

family by Alizadeh et al. (2017), Odd Frechet G family by Haq and Elgarhy (2018). There is, however, the 

need for a single distribution which could better model the various datasets captured in the aforementioned 

distributions, hence we proposed a generalization of the exponential distribution based on the family of 

distribution proposed by Elgarhy et al. (2017). 

The exponential (Ex) distribution has been generalized by many authors. For example, Gupta and 

Kundu (2001) proposed the exponentiated Ex (EEx) distribution, Nadarajah and Kotz (2006) proposed the 

beta Ex (BEx) distribution, Cordeiro et al (2010) developed the Kumaraswamy Ex (KEx) distribution as a 

special case of the KumaraswamyWeibull distribution, and Cordeiro et al. (2010) proposed the 

KumaraswamyWeibull distribution.  The transmuted generalized Ex (TGEx) distribution was developed by 

Khan et al. (2013), the alpha power Ex (APEx) distribution was studied by Mahdavi and Kundu (2016), 

and the Kumaraswamy transmuted Ex (KTEx) distribution was studied by Afify et al. (2016). 

 

2. Materials and Methods 

 

Elgarhy, et al. (2017) proposed the New Extended Exponentiated–G (NEET-G) family, which encompasses 

a broader range of distributions. The cumulative distribution function (cdf) and probability density function 

(pdf) for the NEET-G family are, respectively, given by: 

𝐹𝐸𝑡𝐸−𝐺(𝑥; 𝜃, 𝛼, 𝜆, 𝛾) = {1 − [1 − [𝐺(𝑥; 𝛾)]]
𝛼𝜆

}
𝜃

            (1) 

and 

𝑓𝐸𝑡𝐸−𝐺(𝑥; 𝜃, 𝛼, 𝜆, 𝛾) = 𝜃𝛼𝜆𝑔(𝑥; 𝛾)[1 − [𝐺(𝑥; 𝛾)]]
𝛼𝜆−1

{1 − [1 − [𝐺(𝑥; 𝛾)]]
𝛼𝜆

}
𝜃

          (2) 

where x is the variable being modeled and 𝜃, 𝛼, 𝜆, ≥ 0 are the shape parameters.  The cdf and pdf of 

exponential distribution are given respectively as: 

𝐺(𝑥; 𝛽) = 1 − 𝑒−𝛽𝑥             (3) 

and 

𝑔(𝑥; 𝛽) = 𝛽𝑒−𝛽𝑥             (4) 

where 𝛽 ≥ 0 is the scale parameter.  
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The goal of this study is to propose the Extended Exponentiated Exponential (EEtEx) distribution. 

Study some of its properties like moments, quantile, moment generating function, hazard function, survival 

function, odd function, distribution of order statistic, estimate the parameters by means of the maximum 

likelihood method, and design a truncated life test on the EEtEx distribution and applying the tabulated 

results using real data sets. 

 

2.1 The Proposed Extended Exponentiated Exponential (EEtEx) distribution 

In this section, a new Extended Exponentiated Exponential (EEtEx) distribution is derived. To obtain the 

new distribution, (3) is inserted into (1) to give the cumulative distribution function (cdf) of EEtEx as: 

𝐹𝐸𝐸𝑡𝐸𝑥(𝑥; 𝜃, 𝛼, 𝜆, 𝛽) = {1 − [𝑒−𝛽𝑥]
𝛼𝜆

}
𝜃

            (5) 

 

On differentiating (5), we obtained the pdf of the new EEtEx distribution as:  

𝑓𝐸𝐸𝑡𝐸𝑥(𝑥; 𝜃, 𝛼, 𝜆, 𝛽) = 𝜃𝛼𝜆𝛽𝑒−𝛼𝜆𝛽𝑥{1 − 𝑒−𝛼𝜆𝛽𝑥}
𝜃−1

𝑥, 𝜃, 𝛼, 𝜆, 𝛽 ≥ 0          (6) 

where 𝛽 ≥ 0is the scale parameter and 𝜃, 𝛼, 𝜆, ≥ 0 are the shape parameters. 

 

We can represent the distribution as follows using binomial expansion on (5) as:  

{1 − [𝑒−𝛽𝑥]
𝛼𝜆

}
𝜃−1

= ∑
(−1)𝑖Γ(𝜃)

𝑖!Γ(𝜃−𝑖)
∞
𝑖=0 [𝑒−𝛼𝜆𝛽𝑥]

𝑖
            (7) 

𝑓𝐸𝑡𝐸𝐸𝑥(𝑥; 𝜃, 𝛼, 𝜆, 𝛽) = 𝜃𝛼𝜆𝛽 ∑
(−1)𝑖Γ(𝜃)

𝑖!Γ(𝜃−𝑖)
∞
𝑖=0 [𝑒−𝛼𝜆𝛽𝑥]

𝑖+1
           (8) 

Using (8), various properties of the EEtEx distribution can be derived. 

 

2.2 Mathematical Properties 

Some of the mathematical properties of the EEtEx family are derived and presented in this section. 

 

2.2.1 Moments  

𝐸(𝑥𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

0
              (9) 

𝐸(𝑥𝑟) = 𝜃𝛼𝜆𝛽 ∑
(−1)𝑖Γ(𝜃)

𝑖!Γ(𝜃−𝑖)
∞
𝑖=0 ∫ 𝑥𝑟𝑒−𝛼𝜆𝛽𝑥(𝑖+1)𝑑𝑥

∞

0
         (10) 

where 

    ∫ 𝑥𝑟𝑒−𝛼𝜆𝛽𝑥(𝑖+1)𝑑𝑥
∞

0
= (

1

𝛼𝛽𝜆(𝑖+1)
)

𝑟+1
Γ(𝑟 + 1)          (11) 

Therefore 

𝐸(𝑥𝑟) = 𝜃𝛼−𝑟𝛽−𝑟𝜆−𝑟 ∑
(−1)𝑖Γ(𝜃)

𝑖!(𝑖+1)𝑟+1Γ(𝜃−𝑖)
Γ(𝑟 + 1)∞

𝑖=0          (12) 
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2.2.2 Moment generating function 

The moment generating function (mgf) of 𝑋 is obtained using the equation 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

0
          (13)  

𝑒𝑡𝑥 = ∑
𝑡𝑚𝑥𝑚

𝑚!
∞
𝑚=0            (14) 

𝐸(𝑒𝑡𝑥) = 𝜃𝛼−𝑚𝛽−𝑚𝜆−𝑚 ∑ ∑
(−1)𝑖Γ(𝜃)𝑡𝑚

𝑖!𝑚!(𝑖+1)𝑚+1Γ(𝜃−𝑖)
Γ(𝑚 + 1)∞

𝑖=0
∞
𝑚=0           (15) 

 

2.2.3 Quantile Function 

The EEtEx distribution is simply approximated by inverting (5) as follows: If 𝑢 has a uniform distribution 

𝑈(0,1), then the nonlinear equation's solution is: 

{1 − [𝑒−𝛽𝑥]
𝛼𝜆

}
𝜃

= 𝑢 

𝑢
1
𝜃 = 1 − [𝑒−𝛽𝑥]

𝛼𝜆
 

1 − 𝑢
1
𝜃 = [𝑒−𝛽𝑥]

𝛼𝜆
 

−𝛽𝜆𝛼𝑥 = 𝑙𝑜𝑔 [1 − 𝑢
1
𝜃] 

𝑥 = 𝑄(𝑢) =
−𝑙𝑜𝑔[1−𝑢

1
𝜃]

𝛽𝜆𝛼
           (16) 

Equation (16) becomes the quantile function of Extended Exponentiated Exponential (EEtEx) distribution. 

𝑄(0.5) =
−𝑙𝑜𝑔[1−0.5

1
𝜃]

𝛽𝜆𝛼
           (17) 

Equation (17) is the median of Extended Exponentiated Exponential (EEtEx) distribution.  

  

2.2.4 Hazard function 

𝐻(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝑓(𝑥;𝛼,𝛽,𝜆,𝜃)

𝑆(𝑥,𝛼,𝛽,𝜆,𝜃)
          (18) 

𝐻(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝜃𝛼𝜆𝛽𝑒−𝛼𝜆𝛽𝑥{1−𝑒−𝛼𝜆𝛽𝑥}

𝜃−1

1−{1−[𝑒−𝛽𝑥]
𝛼𝜆

}
𝜃          (19) 

 

2.2.5 Survival function 

The survival function can be defined as the probability of an item not failing before a certain time (t). It is 

represented as: 

𝑆(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) = 1 − 𝐹(𝑥; 𝛼, 𝛽, 𝜆, 𝜃)          (20) 

𝑆(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) = 1 − {1 − [𝑒−𝛽𝑥]
𝛼𝜆

}
𝜃

          (21) 
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2.2.6 Odds function 

The odds function is derived using the relation: 

     𝑂(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝐹(𝑥;𝛼,𝛽,𝜆,𝜃)

𝑆(𝑥;𝛼,𝛽,𝜆,𝜃)
          (21) 

𝑂(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
{1−[𝑒−𝛽𝑥]

𝛼𝜆
}

𝜃

1−{1−[𝑒−𝛽𝑥]
𝛼𝜆

}
𝜃         (22) 

 

2.3 Distribution of Order statistic 

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be n independent random variable from an Extended Exponentiated Exponential (EEtEx) 

distribution. Also, let 𝑋(1) ≤ 𝑋(2) ≤. . . ≤ 𝑋(𝑛) be the corresponding order statistic. If : ( )r nF x and : ( )r nf x , 

𝑟 = 1,2,3, . . . 𝑛 represent the cdf and pdf of the rth order statistics :r nX  respectively, the pdf of the rth order 

statistics of :r nX  is given as 

𝑓𝑟:𝑛(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
1

𝐵(𝑟,𝑛−𝑟+1)
∑

(−1)𝑖Γ(n−r+1)

𝑖!Γ(n−r+1−i)

𝑛−𝑟

𝑖=0
[𝐹(𝑥; 𝛼, 𝛽, 𝜆, 𝜃)]𝑟+𝑖−1𝑓(𝑥; 𝛼, 𝛽, 𝜆, 𝜃)       (23) 

Using the cdf and pdf of Extended Exponentiated Exponential (EEtEx) distribution in (5) and (6), we have 

𝑓𝑟:𝑛(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
1

𝐵(𝑟,𝑛−𝑟+1)
∑ ∑

(−1)𝑖+𝑗Γ(θ(r+i))

𝑖!𝑗!Γ(θ(r+i)−j)

𝑛−𝑟

𝑖=0

∞
𝑗=0 [𝑒−𝛽𝛼𝜆𝑥]

𝑗+1
         (24) 

Equation (24) becomes the rth order statistic of the Extended Exponentiated Exponential (EEtEx) 

distribution. The minimum and maximum order-statistics are obtained by setting 𝑟 = 1 and 𝑟 = 𝑛 

respectively in (24). 

 

2.4 Maximum Likelihood Estimation (MLE) 

𝑙𝑜𝑔𝐿 = 𝑛𝑙𝑜𝑔𝜃 + 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝜆 + 𝑛𝑙𝑜𝑔𝛽 − 𝛼𝛽𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1 + (𝜃 − 1) ∑ 𝑙𝑜𝑔[1 − 𝑒−𝛼𝜆𝛽𝑥𝑖]𝑛

𝑖=1     (25) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜃
=

𝑛

𝜃
+ ∑ 𝑙𝑜𝑔[1 − 𝑒−𝛼𝜆𝛽𝑥𝑖]𝑛

𝑖=1           (26) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
=

𝑛

𝛼
− 𝛽𝜆 ∑ 𝑥𝑖 + (𝜃 − 1) ∑ [

𝛼𝑒−𝛼𝑥𝑖

1−𝑒−𝛼𝑥𝑖
]𝑛

𝑖=1
𝑛
𝑖=1           (27) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜆
=

𝑛

𝜆
− 𝛽𝛼 ∑ 𝑥𝑖 +𝑛

𝑖=1 (𝜃 − 1) ∑ [
𝜆𝑒−𝜆𝑥𝑖

1−𝑒−𝜆𝑥𝑖
]𝑛

𝑖=1           (28) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
=

𝑛

𝛽
− 𝜆𝛼 ∑ 𝑥𝑖 +𝑛

𝑖=1 (𝜃 − 1) ∑ [
𝛽𝑒−𝛽𝑥𝑖

1−𝑒−𝛽𝑥𝑖
]𝑛

𝑖=1           (29) 

Note: Equations (26), (27), (28) and (29) does not have their simple form and therefore, are 

intractable. Thus, the choice of non-linear estimations of parameters using an iterative procedure. The 

Extended Exponentiated Exponential (EEtEx) distribution's cdf, pdf, reliability, and Hazard functions 

graphs are shown in Fig. 1 to 4. 
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Figure1: Cdf Plot of Exponentiated Exponential (EEtEx) 

distribution 

 

Figure 2: Pdf Plot of Exponentiated Exponential (EEtEx) 

distribution 

 

Figure 3: Survival Function Plot of Exponentiated 

Exponential (EEtEx) distribution 

 

Figure 4: Hazard Function Plot of Exponentiated 

Exponential (EEtEx) distribution 
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2.5 Acceptance Sampling Plan 

In “statistical quality control” as a field, an acceptance sampling plan is a major tool for assuring quality. 

When testing of items is destructive and the cost of a 100 percent inspection is prohibitively very high, 

acceptance inspection is utilized (Al-Omari 2018). A random sample is randomly selected from the lot, and 

a decision is made whether to accept or reject the lot on the bases information provided by the sample. 

Because a product's lifetime of an item is expected to be very long and waiting until all of the goods fail 

might be time consuming, therefore it becomes a practice to end a life test at a predetermined time (t) in 

order to save time and money (Al-Omari 2016). 

According to Mahdy et al. (2018), one major objective of this test is to create a confidence limit on 

the true mean life (𝜇) and a specified mean life (𝜇0) with at least a probability of P* (consumer's confidence 

level).  

If the observed number of failures does not exceed a predefined acceptance number (c), the lot is 

accepted. If the number of failures reaches ‘c’, the test will be terminated and the lot discarded at time t0. 

Using the truncated life test, the task at hand is to establish the minimum sample size (n) required to ensure 

a certain mean lifetime. A lot is considered acceptable if its true mean-life (µ) is more than the specified 

mean-life (µ0), otherwise, it is rejected. For a given sample plan, the consumer's risk and the producer's risk 

are the probability of accepting bad lots and rejecting good lots, respectively (Sampath and Lalitha 2016). 

In the rest of this study, acceptance sampling techniques based on a truncated life testing for the 

proposed Extended Exponentiated Exponential (EEtEx) distribution will be explored and applied to real-

life data. 

 

2.5.1 Design of the Truncated Sampling Plan 

Let 𝜇 be the actual or true mean life of an item under consideration, and𝑡, the length of timetheitem is 

subjected to a life test. The item’s product life time is given by the ratio of the operational test time to the 

true mean life, 
𝑡

𝜇
, which is considered the quality parameter. In this study, we are interested in modeling the 

item’s product life time given by the ratio,
𝑡

𝜇
, hence we replace the variable 𝑥 in the proposed distribution 

by the item’s product life time 
𝑡

𝜇
. 

Assume that an item's product life time follows an Extended Exponentiated Exponential (EEtEx) 

distribution, the life distribution's cdf and pdf are as follows: 

𝐹
𝐸𝐸𝑡𝐸

𝑡

𝜇

(
𝑡

𝜇
; 𝜃, 𝛼, 𝜆, 𝛽) = {1 − [𝑒

−𝛽
𝑡

𝜇]
𝛼𝜆

}

𝜃

         (30) 

 

and 
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𝑓
𝐸𝐸𝑡𝐸

𝑡

𝜇

(
𝑡

𝜇
; 𝜃, 𝛼, 𝜆, 𝛽) = 𝜃𝛼𝜆𝛽𝑒

−𝛼𝜆𝛽
𝑡

𝜇 {1 − 𝑒
−𝛼𝜆𝛽

𝑡

𝜇}
𝜃−1

         (31) 

where 
𝑡

𝜇
≥ 0 is the quality or scale parameter and 𝜃, 𝛼, 𝜆, 𝛽 ≥ 0 are the shape parameters. 

The life test terminates at a predetermined time (t), and the number of failures is recorded between 

[0, t]. The lot is accepted if the number of failures at the end of time (t) is less than or equal to the acceptance 

number (c). The lot size is always assumed to be infinitely large in order for the binomial distribution to fit 

well. Assume that the consumer's risk is set to be at most 1- P*(where P* is the consumer’s confidence 

level) (Malathi and Muthulakshmi 2017), or the probability that the true mean life is greater than 0 but not 

greater than 1-P*. The goal is to determine the smallest sample size (n) required to satisfy the inequality: 

∑ (𝑛
𝑖
)𝑃𝑖(1 − 𝑃)𝑛−𝑖 ≤𝑐

𝑖=0 1 − 𝑃∗           (32) 

where c is the acceptance number of defective items for specified values of 𝑃∗ ∈  (0, 1);  𝑝 =  𝐹(𝑡; µ0), 

which is the probability that an item observed within the testing time (t) will fail depends only on the ratio 

𝑡

𝜇0 
, where: 

𝑃 = {1 − [𝑒
−𝛽

𝑡
𝜇]

𝛼𝜆

}

𝜃

 

and  

𝜇0 = 𝐸(𝑥1) = 𝜃𝛼−1𝛽−1𝜆−1 ∑
(−1)𝑖Γ(𝜃)

𝑖! (𝑖 + 1)1+1Γ(𝜃 − 𝑖)
Γ(1 + 1)

∞

𝑖=0

 

𝜇0 = 𝜃𝛼−1𝛽−1𝜆−1 ∑
(−1)𝑖Γ(𝜃)

𝑖!(𝑖+1)2Γ(𝜃−𝑖)
Γ(2)∞

𝑖=0    (33) 

If the observed failures during testing time (t) is at most the acceptance number (c), we can conclude 

from (33) that 𝐹(𝑡;  µ)  ≤  𝐹(𝑡;  µ0) with the probability P, which implies µ0  ≤  µ (Rady, Hassanein and 

Elhaddad 2016). The hypothesis (𝐻0:𝜇 ≥ 𝜇0) is accepted or rejected when the lot is accepted or rejected. 

 

2.5.2 Minimum Sample Sizes  

According to Braimah and Osanaiye (2017), the approximate of the improved sample size (n) is given as: 

𝑛 = [
𝜒2

v,β

𝜌𝐹(𝑡;𝜇)
] + 1           (34) 

We then calculate the smallest sample size values that satisfy inequality (32) for the ratio 
𝑡

𝜇0
 = 

0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712 and P*= 0.75, 0.90, 0.95, 0.99 as presented in Table 

1. The mean-ratio values   (
𝑡

𝜇0
) and the confidence level (P*) are consistent with corresponding values of 

Wenhao and Shangli (2014), Amer, Nursel and Ayed (2020) and Amjad and Muhammad (2021), for the 

purpose of comparison. 
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Table 1: Minimum sample values to be selected for test from the lot for a specified time (t) to ascertain a 

probability P∗ and acceptance number (c) such that µ ≥  µ0 

P* C 

𝒕

𝝁𝟎
 

0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 0 4 3 3 2 2 2 2 2 

0.75 1 6 5 4 4 3 3 3 3 

0.75 2 9 7 6 5 5 4 4 4 

0.75 3 11 9 8 7 6 5 5 5 

0.75 4 14 11 9 8 7 6 6 6 

0.75 5 16 13 11 9 8 7 7 7 

0.75 6 19 14 12 11 9 8 8 8 

0.75 7 21 16 14 12 10 10 9 9 

0.75 8 23 18 15 14 11 11 10 10 

0.75 9 26 20 17 15 13 12 11 11 

0.75 10 28 22 18 16 14 13 12 12 

0.90 0 5 4 3 3 2 2 2 2 

0.90 1 8 6 5 5 4 3 3 3 

0.90 2 11 8 7 6 5 5 4 4 

0.90 3 14 11 9 8 6 6 5 5 

0.90 4 17 13 10 9 8 7 6 6 

0.90 5 19 15 12 11 9 8 7 7 

0.90 6 22 16 14 12 10 9 8 8 

0.90 7 24 18 15 14 11 10 9 9 

0.90 8 27 20 17 15 12 11 11 10 

0.90 9 29 22 19 16 14 12 12 11 

0.90 10 32 24 20 18 15 13 13 12 

0.95 0 6 5 4 3 3 2 2 2 

0.95 1 10 7 6 5 4 4 3 3 

0.95 2 13 10 8 7 5 5 4 4 

0.95 3 16 12 10 8 7 6 6 5 

0.95 4 18 14 11 10 8 7 7 6 

0.95 5 21 16 13 11 9 8 8 7 

0.95 6 24 18 15 13 10 9 9 8 

0.95 7 27 20 16 14 12 10 10 9 

0.95 8 29 22 18 16 13 12 11 10 

0.95 9 32 24 20 17 14 13 12 12 

0.95 10 34 26 21 19 15 14 13 13 

0.99 0 9 7 5 5 3 3 3 2 

0.99 1 13 9 8 6 5 4 4 4 

0.99 2 16 12 10 8 6 5 5 5 

0.99 3 19 14 12 10 8 7 6 6 

0.99 4 22 16 13 12 9 8 7 7 

0.99 5 25 19 15 13 10 9 8 8 

0.99 6 28 21 17 15 12 10 9 9 

0.99 7 31 23 19 16 13 11 10 10 

0.99 8 34 25 21 18 14 12 11 11 

0.99 9 37 27 22 19 15 13 13 12 

0.99 10 39 29 24 21 17 15 14 13 
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2.5.3 Operating Characteristic 

The operating characteristic function (probabilities of acceptance) of a given sampling plan (n, c, 
𝑡0

𝜇0
) is the 

probability of accepting a lot when the number of failure after testing (Gui and Aslam, 2017). It is always 

considered as the basis for choosing the minimum sample (n) size and the acceptance number (c). The 

operating characteristic (assuming binomial function) of this acceptance sampling plan is defined as: 

Pr(P) = P (Accepting a lot, given that µ < µ0) = ∑ (𝑛
𝑖
)𝑃𝑖(1 − 𝑃)𝑛−𝑖𝑐

𝑖=0         (35) 

where 𝑝 =  𝐹 ((𝑡0;  µ). The probabilities of acceptance or operating characteristic values for the Extended 

Exponentiated Exponential (EEtEx) distribution are presented in Table 2.  

Table 2: Operating characteristic (Probability of Acceptance) values for sampling plan n, Acceptance 

Number (c) = 2, 
𝑡

𝜇0
 with specified probability P∗ 

P* n t/𝝁° 
𝝁/𝝁° 

2 4 6 8 10 12 

0.75 9 0.628 0.6111 0.8878 0.9548 0.9776 0.9874 0.9922 

0.75 7 0.942 0.5914 0.8769 0.9492 0.9745 0.9855 0.9909 

0.75 6 1.257 0.5709 0.8661 0.9436 0.9713 0.9835 0.9897 

0.75 5 1.571 0.6341 0.8923 0.9553 0.9774 0.9870 0.9919 

0.75 5 2.356 0.3887 0.7690 0.8924 0.9417 0.9650 0.9774 

0.75 4 3.141 0.5258 0.8474 0.9325 0.9643 0.9789 0.9864 

0.75 4 3.927 0.3793 0.7710 0.8929 0.9413 0.9643 0.9766 

0.75 4 4.712 0.2615 0.6895 0.8474 0.9136 0.9463 0.9643 

0.90 11 0.628 0.4472 0.8094 0.9175 0.9576 0.9755 0.9846 

0.90 8 0.942 0.4703 0.8184 0.9211 0.9592 0.9764 0.9851 

0.90 7 1.257 0.4173 0.7859 0.9035 0.9491 0.9700 0.9809 

0.90 6 1.571 0.4356 0.7959 0.9079 0.9513 0.9713 0.9817 

0.90 5 2.356 0.3888 0.7690 0.8924 0.9417 0.9650 0.9774 

0.90 5 3.141 0.2126 0.6343 0.8126 0.8924 0.9328 0.9553 

0.90 4 3.927 0.3793 0.7710 0.8929 0.9413 0.9643 0.9766 

0.90 4 4.712 0.2615 0.6895 0.8474 0.9136 0.9463 0.9643 

0.95 13 0.628 0.3127 0.7216 0.8710 0.9312 0.9593 0.9740 

0.95 10 0.942 0.2770 0.6879 0.8502 0.9184 0.9510 0.9684 

0.95 8 1.257 0.2734 0.6988 0.8553 0.9209 0.9524 0.9693 

0.95 7 1.571 0.2815 0.6880 0.8479 0.9160 0.9491 0.9669 

0.95 5 2.356 0.3887 0.7690 0.8924 0.9417 0.9650 0.9774 

0.95 5 3.141 0.2126 0.6343 0.8126 0.8924 0.9328 0.9553 

0.95 4 3.927 0.3793 0.7710 0.8929 0.9413 0.9643 0.9766 

0.95 4 4.712 0.2615 0.6895 0.8474 0.9136 0.9463 0.9643 

0.99 16 0.628 0.1714 0.5862 0.7889 0.8813 0.9274 0.9526 

0.99 12 0.942 0.1522 0.5556 0.7662 0.8659 0.9168 0.9452 

0.99 10 1.257 0.1331 0.5257 0.7433 0.8499 0.9058 0.9373 

0.99 8 1.571 0.1739 0.5796 0.7793 0.8729 0.9209 0.9477 

0.99 6 2.356 0.1946 0.6077 0.7959 0.8825 0.9267 0.9513 

0.99 5 3.141 0.2126 0.6343 0.8126 0.8924 0.9328 0.9553 

0.99 5 3.927 0.1056 0.5044 0.7243 0.8335 0.8923 0.9265 

0.99 5 4.712 0.0486 0.3887 0.6342 0.7690 0.8459 0.8923 
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2.5.4 Minimum Ratio Function 

The producer’s risk (that is, PR) is the probability of rejecting a lot when it is good, that is, µ > µ0. It is 

defined mathematically as (Rao, Ghitany and Kantam 2008): 

PR = P (Rejecting a lot) = ∑ (𝑛
𝑖
)𝑃𝑖(1 − 𝑃)𝑛−𝑖𝑛

𝑖=𝑐+1          (36) 

For this truncated sampling plan and any specified value for a producer’s risk (R) that will affirm 

the producer’s risk to be at most R. Since 𝑃 =  𝐹 (
𝑡

𝜇0

𝜇0

𝜇
) is a function of  

𝜇0

𝜇
, then 

𝜇0

𝜇
 becomes the smallest 

positive value for which P satisfies the given inequality below: 

∑ (𝑛
𝑖
)𝑃𝑖(1 − 𝑃)𝑛−𝑖 ≤ 𝑅𝑛

𝑖=𝑐+1            (37) 

where 𝑃 = {1 − [𝑒
−𝛽

𝑡

𝜇]
𝛼𝜆

}

𝜃

. 

For any specified value of producer’s risk, for example 𝛾, under any inspection plan, it may be of 

an experimenter interest to know the smallest the ratio value  (
𝜇

𝜇0
) that will satisfies the producer’s risk at 

most 𝛾. This is the smallest positive number for 𝑃 =  𝐹 (
𝑡

𝜇0

𝜇0

𝜇
) to satisfies the inequality in equation (37). 

The Minimum Ratio Function values for Extended Exponentiated Exponential (EEtEx) distribution are 

presented in Table 3.  

Table 3: Minimum ratio values for lots acceptability with producer's risk 0.05 

P* 𝒄 

𝒕

𝝁𝟎
 

0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.713 

0.75 0 7.4200 9.6990 10.6030 13.2520 13.8780 18.5020 23.3980 27.7560 

0.75 1 3.8550 4.3530 5.0060 6.2570 7.5910 10.1210 8.8630 10.5150 

0.75 2 2.8500 3.4570 3.7200 3.9890 4.8220 6.4290 8.1300 6.7100 

0.75 3 2.5170 2.8280 3.1460 3.4850 4.4760 4.8130 6.0850 7.2190 

0.75 4 2.2360 2.4720 2.8170 3.1860 3.6230 3.9030 4.9350 5.8540 

0.75 5 2.1220 2.3760 2.6020 2.7000 3.0730 4.0960 4.1950 4.9760 

0.75 6 1.9830 2.1930 2.4490 2.6070 3.1310 3.5810 3.6760 4.3610 

0.75 7 1.8780 2.0570 2.1830 2.3250 2.7940 3.1990 3.2920 3.9060 

0.75 8 1.8410 2.0350 2.1140 2.2930 2.5320 2.9030 3.6710 3.5530 

0.75 9 1.7700 1.9420 2.0560 2.2650 2.6180 2.6670 3.3720 3.2720 

0.75 10 1.7140 1.8660 2.0080 2.0940 2.4240 2.8690 3.1280 3.0420 

0.90 0 8.9670 11.1300 12.9420 16.1750 19.8740 26.4950 23.3970 27.7570 

0.90 1 4.6000 5.3510 5.8090 7.2600 9.3840 10.1210 12.7980 15.1830 

0.90 2 3.4440 4.0200 4.6130 5.2350 5.9820 6.4290 8.1300 9.6440 

0.90 3 2.9280 3.2380 3.7740 3.9320 5.2260 5.9670 6.0850 7.2190 

0.90 4 2.6340 2.9430 3.2990 3.5210 4.2310 4.8310 6.1080 5.8550 

0.90 5 2.3810 2.7480 2.9910 3.2510 3.5850 4.0960 5.1800 4.9760 

0.90 6 2.2550 2.5100 2.7750 3.0600 3.5360 4.1750 4.5290 5.3720 

0.90 7 2.1590 2.3330 2.6140 2.7300 3.1530 3.7240 4.0450 4.7980 

0.90 8 2.0460 2.2720 2.4890 2.6420 3.1570 3.3760 3.6710 4.3550 

0.90 9 1.9900 2.1560 2.3880 2.5700 2.8930 3.0970 3.9160 4.0000 
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0.90 10 1.9120 2.1210 2.3060 2.3770 2.6770 3.2310 3.6280 3.7100 

0.95 0 10.2290 12.3600 14.8510 16.1750 19.8740 26.4960 33.5060 39.7480 

0.95 1 5.0270 5.7820 6.5110 7.2600 9.3840 12.5110 12.7980 15.1820 

0.95 2 3.7040 4.2740 5.0020 5.2350 6.9720 7.9740 10.0840 9.6440 

0.95 3 3.1130 3.6050 4.0560 4.3400 5.2260 5.9670 7.5460 7.2190 

0.95 4 2.8460 3.2220 3.5180 3.8310 4.7780 5.6400 6.1090 7247.0000 

0.95 5 2.5580 2.8620 3.1710 3.5020 4.0500 4.7800 5.1800 6.1450 

0.95 6 2.4030 2.7040 2.9270 3.2680 3.9100 4.1740 5.2790 5.3720 

0.95 7 2.2870 2.5850 2.7450 3.0950 3.4860 4.2030 4.7100 4.7980 

0.95 8 2.1970 2.4210 2.6040 2.8040 3.4390 3.8070 4.2680 4.3550 

0.95 9 2.1250 2.3540 2.4920 2.7130 3.1520 3.4900 3.9160 4.6460 

0.95 10 2.0360 2.2410 2.4000 2.6380 2.9150 3.2310 3.6280 4.3040 

0.99 0 12.2750 15.3440 17.9490 20.6130 24.2570 32.3400 33.5050 39.7480 

0.99 1 5.9450 6.8990 8.2470 8.9250 10.8880 12.5110 15.8210 18.7690 

0.99 2 4.3830 5.1660 5.7040 6.2520 7.8500 9.2950 10.0840 11.9630 

0.99 3 3.6100 4.2460 4.8100 5.0690 6.5070 6.9660 8.8100 8.9520 

0.99 4 3.2290 3.7230 4.1170 4.3980 6.5080 6.3700 7.1330 8.4610 

0.99 5 2.9310 3.2840 3.6670 3.9630 4.8760 5.3980 6.0440 7.1700 

0.99 6 2.7210 3.0590 3.3490 3.6570 4.2590 5.2130 5.9610 6.2630 

0.99 7 2.5640 2.8910 3.2290 3.4300 4.0930 4.6480 5.3160 5.5870 

0.99 8 2.4420 2.7610 3.0330 3.2550 3.7070 4.2090 4.8140 5.0640 

0.99 9 2.3430 2.5980 2.8770 3.1140 3.6300 4.2020 4.4140 5.2360 

0.99 10 2.2630 2.5180 2.7490 2.9990 3.3590 3.8870 4.5120 4.8470 

 

3. Application to Real Data 

The suggested Acceptance Sampling Plan (ASP) is illustrated using data from 20 electric carts lifetime 

(months) utilized by a manufacturing company for delivery and domestic transportation services in a big 

production plant. The values are: 1.5, 0.9, 2.3, 3.2, 6.2, 7.5, 8.3, 5.0, 3.9, 10.4, 12.6, 15.0, 16.3, 11.1, 22.6, 

19.3, 24.8, 38.1, 31.5 and 53.0 (Al-Omari 2018). To start, we must determine whether the Extended 

Exponentiated Exponential (EEtEx) distribution fits the data. The empirical and theoretical density 

functions (pdf), theoretical distribution function (cdf), quantile (Q-Q), and probability (P-P) plots were all 

utilized to see if the data fit the theoretical distribution. The findings of the tests of goodness of fit were 

acceptable, indicating that the underlined distribution was well-fit. 

Therefore, the estimated mean life of the 20 small electric carts is given as: 

𝜇0 = 𝜃𝛼−1𝛽−1𝜆−1 ∑
(−1)𝑖Γ(𝜃)

𝑖!(𝑖+1)2Γ(𝜃−𝑖)
Γ(2)∞

𝑖=0  = 14.68months≈ 15months.  

Assuming the company want to put the small electric carts for a period of time (t = 14months). 

Therefore, 
𝑡

𝜇0
=

14

15
= 0.9333. Table 1 above shows that the minimum sample of items to be selected for 

operational test for a time (t) for t. Based on Table 1's estimated minimum sample values for 
𝑡

𝜇0
= 0.9333. 

Table 4 shows how we re-evaluated the minimal sample sizes for this experiment. 
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Figure 5: Fitted cdf, pdf, Q-Q and P-P Plot of the data set 

 

Table 4: Electric Carts Minimum Sample Sizes 

C 0 1 2 3 4 5 6 7 8 9 10 

 

P* 

0.75 3 5 7 9 11 13 14 16 18 20 22 

0.90 4 6 8 11 13 15 16 18 20 22 24 

0.95 4 7 10 12 14 16 18 20 22 24 26 

0.99 7 9 12 14 16 19 21 23 25 27 29 

 

For example, from Table 4, a preferred ASP should be one with the highest consumer’s confidence 

level i.e. corresponding to P* = 0.99 and 
𝑡

𝜇0
= 0.9333. If we decide to reject a sample having more than 

two failed items before time t, (i.e. acceptance number,c = 2), table 4 shows the minimum sample size for 

this Plan to be 12, hence the ideal acceptance sampling plan becomes ASP (12, 2, 0.933). On the bases of 

this information provided, the manufacturing firm will only need to purchase 12 Electric Carts (machines) 

in order to finish the manufacturing process in 14 months, even if 2 of the 12 machines have mechanical 

faults throughout the manufacturing process with probability of 0.99. 

The probability of acceptance (operating characteristic) for the sampling plan is ASP (12, 2, 0.933) 

from Table 2 when the confidence level (P* =0.99) are given in Table 5. 

Table 5: Probability of Acceptance for Proposed Plan on Electric Cart Data 

𝜇

𝜇0
 2 4 6 8 10 12 

OC 0.1522 0.5556 0.7662 0.8659 0.9168 0.9452 

Producer’s Risk 0.8478 0.4444 0.2338 0.1341 0.0832 0.0508 

 

If the actual or true mean life of a product is twice the specified mean life(i. e.
𝜇

𝜇0
= 2), Table 5 

shows that the producer's risk will be about 0.8478, 0.4444, 0.2338, 0.1341, 0.0832 and 0.0508 for            
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𝜇

𝜇0
= 2, 4, 6, 8, 10 and 12 respectively. Therefore, the producer's risk is tends to zero as the true mean life 

becomes large. 

Table 3 depicts the minimum ratio values of true mean lifetime to the specified mean lifetime for 

this sampling plan of a lot with a producer's risk R = 0.05. 

For illustration, when P* = 0:99 (that is, the consumer's risk will be  0.01), c = 2 and 
𝑡

𝜇0
= 0.9333, 

𝜇

𝜇0
= 5.1660, which implies that the true mean life of an Electric Cart will have to be 𝜇 = 5.1660 × 𝜇0 =

75.8369 ≈ 76𝑚𝑜𝑛𝑡ℎ𝑠, for it to be purchased and accepted with at least probability 0.95 and rejected with 

a probability that is less than or equal 0.05. 

 

4. Comparative Analysis 

The advantages of the proposed sampling plan for Extended Exponentiated Exponential (EEtEx) 

distribution is compared with other plans under different types of distributions assuming the true mean is 

five times the specified mean life and the acceptable number (c) of defectives equal two. The producer's 

risk is used as a comparison criterion. In comparison to other sample plans, one with a minimum value of 

the producer's risk is more efficient in reducing inspection costs. The proposed sampling plan is compared 

with other plans that were proposed by Amjad and Muhammad (2021) for power Lomax distribution, Amer 

et al. (2020) for Akash Distribution and Wenhao and Shangli (2014) for Gompertz Distribution. 

Table 6 and Fig. 6 shows the comparison of results, which evident that the proposed sample plan 

has a lower Poducer's Risk and converges to zero than the other plans. These favourable results indicate 

that the new inspection sampling plan is better than the other three sampling plans included in these 

comparisons, using the electric cart data. It is therefore recommended for consideration by decision-makers 

and industrialists using other survival lifetime data. 

Table 6: Comparative Sampling Plans (𝑛 = 12, 𝑐 = 2,
𝑡

𝜇0
= 0.933) when 

𝜇

𝜇0
= 4 and 𝑃* =0.99 

𝜇

𝜇0
 2 4 6 8 10 12 

P
ro

d
u

ce
r

’
s 

R
is

k
 Proposed Sampling Plan 0.8478 0.4444 0.2338 0.1341 0.0832 0.0508 

Amjad  and Muhammad (2021) 0.8714 0.4536 0.2488 0.1398 0.0841 0.0519 

Amer et al. (2020) 0.8669 0.4743 0.2567 0.1500 0.0942 0.0743 

Wenhao and Shangli  (2014) 0.8521 0.4302 0.2334 0.1502 0.0943 0.0740 
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Figure 6: Producer’s Risk Plot for Comparison of Sampling Plans 

 

5. Conclusion 

A new distribution was proposed in this study, with its application to acceptance sampling plans based on 

truncated life tests.  Mathematical properties of the distribution were determined with the help of relevant 

plots. The relevant tables for minimum sample size required to ensure the mean life of the test units are 

presented. The probability of acceptance (operating characteristic) values are also presented, as well as the 

related producer risks. The proposed sampling plan was also applied to a real life data for illustration 

purpose.  For the newly developed Extended Exponentiated Exponential (EEtEx) distribution and other 

distributions, the results of this study can be utilized to develop different types of acceptance sampling 

plans, like double, chain, and group acceptance sampling plans. 
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