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Abstract  

 

In this research, a new four-parameter lifetime distribution called the Type I Half-

Logistic exponentiated Lomax distribution is introduced. The study presents 

various mathematical properties of this novel model, including moments, moment 

generating function, quantile function, survival function, and hazard function. 

Additionally, the behavior of the probability density function for both the 

maximum and minimum order statistics is analyzed within the framework of this 

new distribution. The paper also explores parameter estimation using the maximum 

likelihood method to estimate the distribution's unknown parameters. To validate 

the practicality and versatility of the proposed distribution, three real-life datasets 

are used for empirical validation. Comparisons are made with existing lifetime 

distributions from the literature, and the results consistently demonstrate that the 

proposed distribution outperforms others in terms of fit and flexibility for all three 

datasets. This highlights its effectiveness in modeling diverse real-world scenarios. 

The introduction of the Type I Half-Logistic exponentiated Lomax distribution 

contributes to the expansion of distribution theory and offers a valuable tool for 

researchers, statisticians, and analysts to accurately model and analyze lifetime 

data in various fields. The analytical properties derived in this study provide a solid 

foundation for future research and applications, and the successful parameter 

estimation and goodness-of-fit results further validate the practical significance of 

the proposed distribution. 

 

Keywords: Bladder cancer patients, Flexibility, Half-logistic exponentiated, 

Information criteria, Lomax distribution. 

 

   

1. Introduction 

In the last decade, the field of distribution theory has witnessed a surge in research focused on 

developing novel continuous probability distributions with wide-ranging applications in diverse fields 

such as engineering, medicine, insurance, and more. This growing interest can be attributed to the 

limitations of many existing distributions in adequately modeling datasets with heavy tails and 

effectively controlling both skewness and kurtosis, particularly in scenarios where the distribution is 

characterized solely by a scale parameter, as exemplified by the exponential and inverse exponential 

distributions. Consequently, several studies have been undertaken to extend or generalize existing 
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distributions, introducing greater flexibility to classical distributions through the introduction of one or 

more parameters, giving rise to a plethora of families of distributions proposed in the literature. 

Numerous families of distributions have emerged from the endeavors of researchers in the field 

of distribution theory, significantly enriching the repertoire of available statistical tools. Some notable 

works contributing to these families include Bello et al. (2021a), Bello et al. (2021b), Ibrahim et al. 

(2020a), Ibrahim et al. (2020b), Elgarhy et al. (2017), Elgarhy et al. (2018), Cordeiro and deCastro 

(2011), and Falgore and Doguwa (2020). These families of distributions have proven instrumental in 

addressing the limitations of traditional distributions and have expanded their utility across diverse 

fields. Researchers and practitioners have been empowered to achieve enhanced accuracy and precision 

in modeling and analyzing real-world data, thanks to the flexibility and adaptability introduced by these 

families of distributions. Furthermore, the advancements in distribution theory have fostered a deeper 

understanding of complex data patterns, heavy-tailed datasets, and skewed distributions. The 

exploration of various distribution families has significantly improved statistical analysis in diverse 

fields such as engineering, medicine, finance, and more. These distributions have inspired further 

research, leading to an ever-expanding list of models tailored to specific data characteristics. As 

distribution theory advances, the synergy between researchers from different disciplines fosters 

innovative solutions and supports data-driven decision-making. Ultimately, the use of these distribution 

families drives innovation and benefits society as a whole. 

A popular method employed to extend existing distributions is by fitting a baseline distribution 

into a generalized family of distributions. This approach aims to enhance the baseline distribution's 

flexibility and adaptability to different datasets with diverse characteristics. By integrating the baseline 

distribution into a family of distributions, additional parameters are introduced, thereby empowering the 

baseline distribution to better fit a wide range of data patterns. This hybrid distribution can then be used 

to model real-world data with improved accuracy and robustness. The baseline statistical distribution 

under consideration in this research is the Lomax Distribution, also known as the Pareto distribution of 

the second kind. Since its introduction by Lomax (1954), this distribution has gained substantial 

prominence and found widespread use in various fields. Originally employed for fitting business failure 

data in life testing, its utility has expanded to encompass broader realms, including reliability and life 

testing, as demonstrated by the research of Hassan and Al-Ghamdi (2009). Moreover, the Lomax 

distribution has demonstrated its adaptability and practicality across a diverse spectrum of disciplines. 

In the biological sciences, it has been effectively utilized as a modeling tool for various phenomena 

(Tahir et al., 2015). Meanwhile, in computer science, researchers have successfully applied it to describe 

the distribution of sizes of computer files on servers, as evidenced by the comprehensive studies 

conducted by Holland et al. (2006). 

The Lomax distribution is a versatile and widely applicable statistical tool, used to tackle various 

real-world scenarios. Researchers and practitioners recognize its flexibility and predictive capabilities, 

contributing to advancements in statistical analysis and insights into complex data distributions. 

Numerous researchers have extended and modified its applications, leading to a deeper understanding 

of its potential uses. Named after the Russian mathematician Boris Lomax, this distribution finds 

applications across diverse fields due to its adaptability to real-world scenarios. Recent influential works 

include those by Nagarjuna et al. (2022), Sule et al. (2021a and 2021b), Mead (2016), Rady et al. (2016), 

Hassan and Abd-Allah (2018), and Nagarjuna et al. (2021a and 2021b), which have significantly 

broadened its applicability. The simplicity and versatility of the Lomax distribution are evident in its 

two parameters defining its shape and scale. Extensions proposed by researchers have added more 

parameters or constraints, enhancing its adaptability to fit a wide range of datasets more accurately. The 

cumulative efforts to refine the Lomax distribution have broadened its scope of application. It is now 

frequently used in finance, engineering, biology, environmental science, and social sciences. For 

instance, it models extreme events in finance, analyzes the distribution of extreme weather events in 
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environmental science, and studies the occurrence of rare diseases in biology (Ijaz et al., 2019). 

Advancements in distribution theory, like the Lomax distribution, lead to a richer toolbox of statistical 

tools for analyzing complex data and making informed decisions in various industries. 

Hence, the Lomax distribution has evolved significantly due to the contributions of various 

researchers, resulting in a powerful statistical tool with widespread applicability. The extensions and 

modifications have endowed it with greater flexibility, enabling it to tackle a broader array of real-world 

scenarios. As distribution theory continues to progress, the Lomax distribution stands as a testament to 

the value of refining and expanding existing statistical models, promising further advancements in 

statistical analysis across numerous fields. 

The cumulative distribution function (CDF) and probability density function (PDF) of the Lomax 

distribution are provided below in equations (1) and (2), respectively: 

( )1( ; , ) 1x xG
−

= − +


  ,                  (1) 

( )
( )1

( ; , ) 1g x x
− +

= +


    ,                 (2) 

where 0x  , 0 is the scale parameter and 0 is the shape parameter. 

The focus of this study lies on a particular generator introduced by Bello et al. (2021a), known as 

the Type I Half-Logistic Exponentiated family of distribution. By utilizing this generator and 

substituting the Lomax distribution, a novel distribution emerges, named the Type I Half-logistic 

exponentiated Lomax (TLExLx) distribution. Bello et al. (2021a) generator incorporates two shape 

parameters, imparting increased skewness to the baseline distribution and bolstering its capability to 

accurately fit data sets with diverse degrees of skewness. The Type I Half-Logistic Exponentiated family 

of distributions, including the new variant TLExLx, is a notable advancement in distribution theory. 

This innovative distribution reflects the continuous research efforts aimed at enhancing existing models 

and expanding the toolkit of statistical methods. 

The Type I Half-logistic exponentiated (TIHLEt) distribution has CDF and PDF given 

respectively as: 
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              (4) 

where  is the parameter vector of the baseline distribution, ( ; )G x   is the CDF and ( ; )g x  is the 

PDF of the baseline distribution with parameter vector  . 

The objective of this study is to enhance the flexibility and robustness of the classical Lomax 

distribution by incorporating a family of distributions and introducing two additional shape parameters 

( and  ).  

 

2. Derivation of Type I Half-logistic Exponentiated Lomax (TLExLx) Distribution 

In this section, we introduce a novel continuous probability distribution called the Type I Half-logistic 

exponentiated Lomax (TLExLx) distribution. To assess its shape, we illustrate the distribution's 

characteristics by plotting its PDF and hazard rate function (HRF). Furthermore, CDF of the TLExLx 

distribution is obtained by substituting equation (1) into equation (3), leading to the expression: 

https://doi.org/10.22452/josma.vol6no1.4


Bashiru et. Al/https://doi.org/10.22452/josma.vol6no1.4      Vol 6(1), 54-66. 2024 

 

57 
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By substituting equations (1) and (2) into equation (4), the PDF of the TLExLx distribution is 

obtained and it is given as:  
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Figure 1: Plots of the PDF of TLExLx distribution showing the shape of the distribution with 

different parameter values. 

 

The PDF plot of the TLExLx distribution in Figure 1 indicates positive skewness, with the 

distribution's tail concentrated on the right-hand side. 

 

3. Important Representation 

In this section, equation (5) and equation (6) are expanded in linear form and the results are used to 

obtain some of the statistical and mathematical properties of the TLExLx distribution. 

By employing binomial expansion on the denominator of equation (6), we have  
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After mathematical computation, we arrived at  
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Equation (7) is the linear representation of equation (6). Also, using equation (5), 
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Equation (8) is the linear representation of equation (5). 

 

4. Properties of Type I Half-logistic exponentiated Lomax (TLExLx) Distribution  

4.1 Moment 
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By using the important representation of the PDF in equation (7), we have  
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TLExLx distribution is obtained. 

 

4.2 Moment generating function 

Moment generating function of a distribution is obtained as 
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Using the method of moments, we obtain the moment-generating function of the TLExLx distribution 
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4.3 Reliability function  

The reliability function is defined as 
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                        (12) 

Subsequently, the TLExLx distribution’s survival function is expressed as 

( )

( )

2 1 1 1

( )

1 1 1 1

x

S x

x

−

−

  − −  +     
=

  + − −  +     









                   (13) 

 

4.4 Hazard Function 

The expression for the hazard function is as follows 
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Subsequently, the hazard function of TILEtLx distribution is expressed as 
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Figure 2: Hazard function plot of the TLExLx distribution showing the shape of the distribution with 

different parameter value. 

 

The Hazard function plot of the TLEX distribution exhibits a monotonically increasing and 

decreasing hazard shape. 

 

4.5 Quantile Function 

Quantile function is an important function in generating random numbers from any probability 

distribution. It is the inverse of CDF. Quantile function is obtained using  
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The quantile function of TLExLx distribution is given as 
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4.6 Order Statistics 

If ~X  TLExLx distribution, then the pdf of the rth order statistics of 
:r nX  is expressed as 
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The PDF of rth order statistic for TLExLx distribution is obtained by replacing ℎ with 𝑣 + 𝑟 − 1 

in equation (8). Thus we have 
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The pdf of minimum order statistic of the TLExLx distribution is obtained by setting 𝑟 = 1 in 

equation (18) 
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Also, the pdf of maximum order statistic of the TLExLx distribution is derived by setting 𝑟 =  𝑛 

in equation (18) 
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5. Maximum Likelihood Estimation 

In this section, we utilize the maximum likelihood estimation (MLE) technique to determine the 

parameter values of the TLExLx distribution. Through MLE, we aim to find the most probable values 

for these parameters, enabling us to effectively characterize and understand the behavior of the TLExLx 

distribution based on the available data. For a random sample, 
1 2, ,..., nX X X  ~ ( , , , )TLExLx     , the 

log-likelihood function ( , , , )L      of (6) is given as 
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Differentiating equation (21) with respect to each parameter and equating to 0, we have 
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The ML estimates of the parameters , ,    and    cannot easily be solved analytically due to 

the nonlinear system of equations existing in an unclosed form. Therefore, in this study, R statistical 

software is utilized to solve them numerically. 

 
6. Applications to Real-life Data Sets 

In this section, we utilize the TLExLx distribution to evaluate the adaptability and robustness of the 

novel model on three separate real-world datasets. The comparative study involves the examination of 

various established distributions, including Topp Leone Lomax (TLLx), exponentiated Lomax (EtLx), 

and Lomax (Lx) distributions. To assess how well these distributions fit the datasets, we employ two 

commonly used statistical measures: the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). Using these criteria, we can objectively gauge the performance of each 

distribution and pinpoint the one that produces the lowest AIC and BIC values, signifying the most 

suitable match for each specific dataset. The inclusion of these evaluation metrics enables us to gain 

valuable understanding regarding the efficacy of the TLExLx distribution in comparison to other well-

established distributions for modeling real-life datasets. This statistical analysis will shed light on how 

effectively the TLExLx distribution captures data patterns and how it stacks up against existing 

distributions in terms of providing a plausible parametric fit to the observed data. 

The first dataset originates from Hinkley (1977) and consists of thirty consecutive observations 

of March precipitation in Minneapolis/St. Paul, measured in inches. The data is presented in Table 1 as 

follows: 

 

Table 1: First Data Set 

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 

0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05 
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The second dataset is obtained from Murthy et al. (2004) and pertains to the time intervals 

between failures for repairable items. The data is presented in Table 2 as follows: 

 

Table 2: Second Data Set 

1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 

0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17 

 

The third dataset encompasses the total sum of skin folds in 202 athletes, which was collected at 

the Australian Institute of Sports and referenced by Hosseini et al. (2018).  The data set is given in Table 

3 as follows: 

 

Table 3: Third Data set 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 

57.0, 43.1, 71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 

74.9, 90.4, 54.6, 131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 

41.5, 34.6, 30.9, 100.7, 80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 

76.2,101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 

88.9, 31.0, 37.6,52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 

70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 

48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 76.8, 99.8, 80.1, 57.9, 

48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 30.3, 52.8, 

49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 42.3, 

40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 

125.9, 49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9 

 

Table 4: The ML estimates and fit of the models based on data set 1 

Model ̂  ̂  ̂  ̂  l−  AIC BIC 

TLExLx 4.745 3.487 0.330 47.227 37.108 82.216 86.521 

TLLx - 0.420 6.035 2.394 38.765 83.529 87.733 

EtLx - 0.163 4.767 9.401 38.384 82.768 86.972 

Lx - 0.008 - 73.863 45.488 94.976 97.778 

 
Figure 3: Histogram and fitted models for data set 1 
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Table 5: The ML estimates and fit of the models derived from data set 2 

Model ̂  ̂  ̂  ̂  l−  AIC BIC 

TLExLx 5.887 10.940 0.268 49.531 32.002 72.005 76.717 

TLLx - 0.164 3.131 4.134 33.242 72.484 76.816 

EtLx - 0.216 3.275 6.631 33.258 72.516 76.848 

Lx - 0.003 - 241.928 35.763 75.526 77.882 

 

 
Figure 4: Histogram and fitted models for data set 2 

 

Table 6: The ML estimates and fit of the models based on data set 3 

Model ̂  ̂  ̂  ̂  l−  AIC BIC 

TLExLx 38.783 0.008 12.800 0.620 954.405 1916.809 1930.042 

TLLx - 0.001 9.838 15.378 957.127 1920.253 1930.178 

EtLx - 0.005 13.311 10.873 955.920 1917.840 1930.765 

Lx - 0.004 - 3.604 1078.429 2160.855 2167.475 

 
Figure 5: Histogram and fitted models for data set 3  
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It is observed that the TLExLx model consistently yields the lowest goodness-of-fit scores, as 

indicated by the negative log-likelihood, AIC, and BIC metrics, across all three datasets, as shown in 

Tables 4 to 6. This suggests that the TLExLx distribution performs better than the other competing 

distributions in terms of fitting the data. Furthermore, the histogram plots displayed in Figures 3 to 5 

provide additional support for this conclusion, indicating that the TLExLx distribution exhibits greater 

flexibility compared to its competitors. 

 

7. Conclusion 

This study introduces the Type I Half-logistic exponentiated Lomax distribution, a novel model with 

enhanced flexibility due to its incorporation of four parameters. Our results clearly demonstrate the 

distribution's effectiveness in representing diverse datasets. Beyond proposing the distribution, we 

establish a set of statistical and mathematical properties for it, providing essential tools for researchers. 

We also explore order statistics for this distribution, enriching our understanding of its behavior. The 

parameters of the distribution were estimated using the maximum likelihood method of estimation. To 

assess its performance, we conduct tests on real-life datasets, consistently showcasing its superiority 

over comparison models. Density graphs visually highlight its excellent fit to the data. The Type I Half-

logistic exponentiated Lomax distribution is a significant advancement in distribution theory, making it 

applicable to complex datasets. Its performance in real-world scenarios and comprehensive statistical 

properties validate its practicality and theoretical importance. This work paves the way for further 

applications, promising exciting developments in statistical modeling across diverse fields. 
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