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Abstract  

 

Conditional expectations and residuals (CERES) and partial residual (PR) plots 

have been used in linear regression model for the identification of multicollinearity. 

But not much work has been done on how they perform in generalized linear 

models (GLM). Binomial regression model (BRM) is a very important type of 

GLM which has wide applications in dealing with heart disease and many other 

types of data. In this paper we have offered a comparison between CERES and PR 

plots in BRM to detect the multicollinearity problem. At first, we have developed 

a comparison tool and then apply them to real-world and simulated data. We 

observe the performance of these plots on the detection of a possible 

multicollinearity separately. We observe that both these plots perform well in order 

to diagnose this problem for a real data. However, the overall performance of the 

CERES plot is found better as compared to the PR plots. 

 

Keywords: Binomial regression model, CERES, Diagnostics, GLM, 

Multicollinearity and PR plots. 

 

   

1. Introduction 

Probably, regression analysis is the most popular statistical method where the connection between a 

dependent variable and independent variables is described. No exact relationship exists due to the 

existence of some factors which cannot be explained by the relationship, and known as errors. It is 

assumed in classical regression that those errors are normally distributed and so that the response 

variable also follows a normal distribution. But usually in real life problems, ideal condition does not 

discover and we have to adopt alternative method, named as generalized linear model (GLM) (Nelder 

and Wedderburn, 1972). GLM is a lithe generalized approach of a linear regression modal (LRM) that 

tolerates the other than normal distribution of the response variable via a link function. In this paper, we 

considered a response follows a binomial distribution which has wide applications where survival from 

disease, from accident etc. are under study. VIF is a method to check multicollinearity in regressors. 

The parameter estimation of GLM depends on some standard assumptions. There are number of 

different diagnostic tests which are designed to find problems with the assumptions of any statistical 

procedure. In the multiple regression model, there is one basic assumption is that there is no perfect 

multicollinearity. This issue arises when two or combinations of variables are correlated. It has several 
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consequences. Multicollinearity often causes a wrong sign problem (Mullet, 1976). It may inflate the 

variances of the estimators and consequently the significant estimators may find insignificant. 

In this paper, we are going to use PR and CERES plots. PR plots was presented by Ezekiel (1924), 

to observe the direction of a regressor variable graphically. Larsen and McCleary (1972) should get 

credit for the name PR plots. PR plots also called component plus residual plots. Many authors extended 

this idea and made augmented PR plots (Mallows, 1986) and CERES plots (Cook, 1993). Further, the 

properties of PR plots were explored by Cook (1993) and Cook and Croos-Dabrera (1998). Berk and 

Booth (1995) compared PR plots with several other diagnostic plots. Fowlkes (1987) suggested an 

adaption of PR plots for logistic regression. Landwehr (1983) suggested the use of these plots for logistic 

regression. Fowlkes (1987) and Landwehr et al. (1984) claimed that PR plots are helpful in detecting 

nonlinearity in binary logistic regression. Landwehr and Pregibon (1993) studied our considered plots 

for GLM using canonical links. Kahng and Lee (2004) discussed the usefulness of CERES plots in 

GLM. Parkand Hastie (2007) discussed the technique of algorithm for regularized the GLM. Imran and 

Imran and Akbar (2020) discussed the construction of PR plots using response residuals for the inverse 

Gaussian regression model (IGRM). Saleem et al. (2022) used and compared the CERES and PR plots 

in detecting the heteroscedasticity problem using Liver cancer and simulated data. Hussain and Akbar 

(2022) also discussed the importance of partial residual plots by using chemical species data. Saleem et 

al. (2022) used and compared the CERES and PR plots in detecting the outlier’s problem using Liver 

cancer and simulated data. 

Now in this research, CERES and PR plots are created for binomial regression model (BRM). 

This will provide simple, powerful and wide applicable technique to the researchers for computational 

ease. These plots provide suitable diagnostics for model specification. This research discovers such idea 

while offering the importance of CERES and PR plots in regression diagnostics without examine the 

predictable tests. Finally, we will compare CERES and PR plots, and also identify which plot performs 

better in the detection of multicollinearity. 

The rest of the paper is organized as, in section 2, construction of the comparison tools of CERES 

and PR plots for BRM. Section 3, discussed real data example heart disease data. Section 4, monte Carlo 

simulation and section 5 results and discussion. 

 

2. Construction of the Comparison Tool 

In this section, performance of CERES and PR plots will be compared in binomial regression for the 

detection of multicollinearity. The model is, 

𝑌 = 𝑔(𝑋) +  𝜀                                                                                          (1) 

where X = (𝑋1 , 𝑋2 , … , 𝑋𝑝)′ is the matrix of  𝑛 × 𝑝 explanatory variables, 𝜀 is 𝑛 × 1 vector and 

Y = (𝑦1 , 𝑦2 , … , 𝑦𝑝)′ is an 𝑛 × 1 vector of response and follows a binomial distribution with pdf 

𝑓(𝑦;  𝑛, 𝜇) =  (
𝑛
𝑦) 𝜇𝑦(1 − 𝜇)𝑛−𝑦           y = 0, 1, 2, …, n                  (2) 

The mean and variance of y are 𝑛𝜇 and 𝑛𝜇(1 −  𝜇), respectively. In logistic regression, which is 

main example in present research, Y*|X is a binomial (n, 𝜇) random variable, its p may depend on X. n 

is independent and vary from observation to observation. The response Y = Y*/n is then the observed 

fraction of successes from a typical binomial trial and its link function can be written as (McCullagh 

and Nelder,1983; Cook and Cross-Debrrera,1998) 

𝜂 =  𝜃 = ℎ(𝜇) = 𝑙𝑜𝑔(
𝜇

1−𝜇
)                                                                     (3) 

𝜇(𝜂) = log (1 + exp (𝜂)), and v(𝜓) =1/n. 
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Cook (1993) investigated the performance of PR plots and found that those are strongly depends 

on the conditional expectation E(𝑋1|𝑋2), also he showed that if 𝑋2 is linear in the E(𝑋1|𝑋2), then 

performance of plots is outclass. Berk and Booth (1995) presented their research where they compared 

the methods for identifying the 𝑔(𝑋2), with several plots, i.e. CERES plots (Cook 1993), PR plots, 

standard residual plots and a numerical method. This method is based on algorithm which was proposed 

by Breiman and Friedman (1985). They also described that PR plots are mostly used in GLM to examine 

the predictor transformation. But the results shows that effectiveness of PR plots can be limited in 

different aspects and they may not perform well in GLM. Most of the observation in CERES plot are 

very close to each other that is conjunction between the points, this is a case of severe multicollinearity. 

But on the other hand, in PR plots most of observation are not close to each other there is lack of 

multicollinearity. 

On basis of this literature, we focus on PR plots of GLM and present a general definition of PRs 

Conclusions regarding CERES plots can be obtained in a straightforward way from the developments 

for PR plots. A (𝑝2 + 1) dimensional Cartesian coordinate plot of the scalar 𝛼 versus the 𝑝2-

dimensionless vector b will occasionally be denoted by {a, b}, with the understanding that the first 

argument is assigned to the vertical axis and the coordinates of b are assigned to the "horizontal" axes. 

The data is summarized by fitting, 

𝜂𝑓(x|b) = ℎ(𝜇𝑓) =  𝑏0 + 𝑏1
′𝑋1+  𝑏2

′
ɩ(𝑋2)                                (4) 

where ɩ(𝑋2) is a user-defined function of 𝑋2 and adaptation of will be discussed later. Estimated 

coefficients �̂�𝑗, j= 0, 1, 2, based on (4) are assumed to be obtained by minimizing a convex objective 

function. (for details see, Cook and Cross-Debrrera,1998) 

A PR plot for 𝑋2 is obtained by first setting ɩ(𝑋2) = 𝑋2 then constructing the (𝑝2 + 1)-dimensional 

plot {𝑝�̂�2 , 𝑋2}, where 

𝑝�̂�2 = (y –�̂�𝑓)ℎ′ (�̂�𝑓) + �̂�2
′ 𝑋2                                                                 (5) 

is the PR for 𝑋2, ℎ′(.) is the first derivative of h(.) 

The CERES plot for 𝑋2 is then the (𝑝2+ 1)-dimensional plot {𝑐�̂�2, 𝑋2},  

𝑐�̂�2 =(y –�̂�𝑓)ℎ′ (�̂�𝑓) + �̂�2
′ �̃�(𝑋1|𝑋2)                                                    (6) 

where ɩ(𝑋2) =�̃�(𝑋1|𝑋2). A CERES plot reduces to a PR plot when �̂�2
′ �̃�(𝑋1|𝑋2) is a linear function of 

𝑋2. Cook (1993) described the construction of �̃�(𝑋1|𝑋2). So, in case if responses are binary the CERES 

and PR plots for BRM can be constructed by using equations (5) and (6). 

The first derivative of the binomial regression link function given in equation (3) is 

ℎ′ (�̂�𝑓) = 
1

𝜇(1−𝜇)
 

Hence, the fitted model by using log link for BRM can be expressed as 

�̂�𝑓 =
е�̂�0 +�̂�1

′ 𝑥1 + �̂�2
′ 𝑥2

1 +  е�̂�0 +�̂�1
′ 𝑥1 + �̂�2

′ 𝑥2
 

where �̂�0, �̂�1
′ , �̂�2

′  are the estimators; �̂�𝑓 denotes the fitted model; and 𝑥𝑖 are the predictors. Similarly, for 

the model with p explanatory variables, the CERES and PR plots can be expressed as 

𝑝�̂�𝑖 =(y –�̂�𝑓)ℎ′ (�̂�𝑓) + �̂�𝑖
′𝑋𝑖        𝑖 = 1, 2, … , 𝑝.                          (7) 

𝑐�̂�𝑖 =(y –�̂�𝑓)ℎ′ (�̂�𝑓) + �̂�𝑖
′�̃�(𝑋𝑖|𝑋𝑖)  𝑖 = 1, 2, … , 𝑝.                            (8) 

and model for p𝑥𝑖s is 
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�̂�𝑓 =
е�̂�0 +�̂�1

′ 𝑥1 + �̂�2
′ 𝑥2+ …�̂�𝑝

′ 𝑥𝑖

1+ е�̂�0 +�̂�1
′ 𝑥1 + �̂�2

′ 𝑥2+⋯�̂�𝑝
′ 𝑥𝑖

                                               (9) 

 

3. Real Data Example: A Heart Disease Data 

Here, we consider a heart disease dataset to observe the performance of CERES and PR plots in the 

detection of multicollinearity for BRM. The methodology developed in the previous section is 

implemented here on the heart disease data previously used by by Ozkake et al. (2018). In this data, 

coronary heart disease is regarded as response variable (Y) with two explanatory variables, Age (𝑋1), 

and Age-group referred (𝑋2). The data contains 100 observations. The purpose of this study was to edify 

the major factors influencing heart disease. The Y (output variable) follows a binomial distribution and 

therefore we use a BRM here. The CERES and PR plots of BRM generated by real data are presented 

in Figures 1 and 2. As it is above mentioned, model has two predictors, so there are two possible CERES 

and PR plots that can be attained.  

From Table 1, the inference related to BRM for Heart disease data and also the multicollinearity 

can be observed on the basis of variance inflation factor (VIF). The VIF is a method to check 

multicollinearity in regressor. If the value of VIF is less than five there is no multicollinearity in your 

data set. If the value of VIF lies between 5 and 10 there is high multicollinearity. If the values of VIF is 

greater than 10 there is severe multicollinearity. According to our results there is a severe 

multicollinearity in data set. 

 

Table 1. Binomial Regression Analysis for Heart Disease Data 

Variables Coefficient SE T Pr (>|t|) VIF 

Constant -0.4555 0.5233 -0.87 0.386  

𝑋1 0.1780 0.02425 0.73 0.465 43.109 

𝑋2 0.0213 0.1269 0.17 0.867 43.109 

Note. S=0.430992, 𝑅2 = 26.5%%, 𝑅2(𝑎𝑑𝑗) = 21.0%,Pearson correlation of X1 and X2 =0.988, p-value = 0.00  

�̂� = [−0.4555 + 0.1780𝑋1 + 0.0213𝑋2] 

 

 
(a). CERES Plot (𝑿𝟏 = Age) for multicollinearity          (b). CERES plot ( 𝑿𝟐 =  𝐀𝐠𝐞 − 𝐆𝐫𝐨𝐮𝐩) for multicollinearity 

Figure 3.1: CERES plots for BRM for Heart disease data 
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             (c). PR Plot (𝑿𝟏 = Age) for multicollinearity              (d). PR plot ( 𝑿𝟐 =  𝐀𝐠𝐞 − 𝐆𝐫𝐨𝐮𝐩) for multicollinearity 

Figure 3.2: PR plots for BRM for Heart disease data 

 

In this heart disease data set, multicollinearity, were clearly observed in Fig 3.1, (a and b), are the 

CERES plots while, Figure 3.2, so (c and d) are PR plots, respectively. In these figures, CERES residuals 

and PR plots were plotted against each regressor i.e. 𝑋1 and 𝑋2 respectively. It is also observed that 

CERES and PR plots show the multicollinearity. It was found that several observations are very adjacent 

to each other that is conjunction between the points, shows the multicollinearity among the points. we 

also observed that CERES plots and PR plots for both of regressors (𝑋1and 𝑋2) can clearly detect the 

multicollinearity, respectively. 

 

4. Monte Carlo Simulation 

In this study, multicollinearity is introduced in the data by following Amin et al. (2019). The simulation 

is conducted using the R software. The monte Carlo scheme and the relevant model for this simulation 

is given as 

𝑋𝑖𝑗 =  √(1 − 𝜃2)𝑍𝑖𝑗 + 𝜃𝑍𝑖(𝑗+1) ; i= 1,2, …, n and j = 1, 2, ..., p 

where  𝑍𝑖𝑗~𝑁(0,1) and 𝜃 is the level of multicollinearity set as 0.8, 0.9, 0.95, and 0.99 in the above 

simulation equation. These values are the multicollinearity level to checked multicollinearity effect. It 

is interesting note that when sample size is n=25 and level of collinearity (𝜃) are 0.8, 0.9, 0.95, and 0.99  

increased as VIF and correlation increase. (see, Amin et al. 2019) 

�̂�𝑖 =
е�̂�0 +�̂�1

′ 𝑥1 + �̂�2
′ 𝑥2

1 + е�̂�0 +�̂�1
′ 𝑥1 + �̂�2

′ 𝑥2
 

The output variable is generated randomly as y ~B (1,�̂�𝑖). The regression coefficients are 

considered to be fixed as 𝛽0 = 𝛽1 = 𝛽2 = 1. We have selected four different sample sizes, i.e., n is 

selected as 25, 50, 100, and 200 with 10,000 replications. The numerical results are presented in Table 

2 and the Figures 3 to 10 represents their graphical representation.  
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Table 2. Binomial Regression Analysis for Simulated Data 

Sample size (n) Level of collinearity (𝜽) VIF Correlation 

n = 25 

0.80 5.255 0.899 

0.90 5.772 0.909 

0.95 8.557 0.939 

0.99 8.943 0.942 

n = 50 

0.80 9.626 0.890 

0.90 10.070 0.942 

0.95 14.470 0.954 

0.99 18.019 0.967 

n = 100 

0.80 8.650 0.937 

0.90 14.528 0.962 

0.95 15.435 0.972 

0.99 15.886 0.988 

n = 200 

0.80 17.828 0.976 

0.90 24.422 0.981 

0.95 30.214 0.983 

0.99 37.633 0.986 

 

 

 
(a). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖   (b). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 

(c). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗   (d). CERES plot ( 𝑿𝟐) for multicollinearity𝜽 = 𝟎. 𝟗 
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(e). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). CERES plot ( 𝑿𝟐) for multicollinearity𝜽 = 𝟎. 𝟗𝟓 

 
(g). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟗 

Figure 4.1: CERES plots when 𝑛 = 25 

 

 
(a). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖   (b). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 
(c). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗   (d). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗 
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(e). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟓 

 
(g). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟗 

Figure 4.2: CERES plots when 𝑛 = 50 

 

 
(a). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖      (b). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 
(c). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗      (d). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗 
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(e). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟓 

 
(g). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). CERES plot ( 𝑿𝟐) for multicollinearity𝜽 = 𝟎. 𝟗𝟗 

Figure 4.3: CERES plots when 𝑛 = 100 

 

 
(a). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖   (b). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 
(c). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗   (d). CERES plot ( 𝑿𝟐) for multicollinearity𝜽 = 𝟎. 𝟗 
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(e). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟓 

 
(g). CERES Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). CERES plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟗 

Figure 4.4: CERES plots when n=200 

 

 
(a). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖   (b). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 
(c). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗   (d). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗 
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(e). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟓 

 

(g). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟗 

Figure 4.5: PR plots when 𝑛 = 25 

 

 
(a). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖   (b). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 
(c). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗   (d). PR plot ( 𝑿𝟐) for multicollinearity𝜽 = 𝟎. 𝟗 
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(e). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟓 

 
(g). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟗 

Figure 4.6: PR plots when 𝑛 = 50 

 

 
(a). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖   (b). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 
(c). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗   (d). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗 
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(e). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟓 

 
(g). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟗 

Figure 4.7: PR plots when 𝑛 = 100 

 

 
(a). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟖   (b). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟖 

 
(c). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗   (d). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗 
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(e). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟓   (f). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟓 

 
(g). PR Plot (𝑿𝟏) for multicollinearity, 𝜽 = 𝟎. 𝟗𝟗   (h). PR plot ( 𝑿𝟐) for multicollinearity 𝜽 = 𝟎. 𝟗𝟗 

Figure 4.8: PR plots when 𝑛 = 200 

 

From Table 2, we notice the existence of multicollinearity through the higher values of the VIF 

and the correlation coefficients. It is intriguing to note that the VIF values increases with the increase in 

sample size and level of correlation. Figures 4.1 to 4.4 present the CERES plots while Figures 4.5 to 4.8 

present the PR plots. It is observed that both the CERES and the PR plots detect multicollinearity 

successfully. Because, both type of plots show that various observations are very close to each other 

that is conjunction between the points, which exhibits the problem of multicollinearity among the points. 

The multicollinearity in the CERES plots is more evident as compared to the PR plots. According to the 

results of CERES plots most of the observation are very close to each other’s that is conjunction between 

the points show a severe multicollinearity. But on the other hand, in PR Plots most of observation are 

not close to each other. 

 

5. Conclusion 
This paper discussed the comparison of CERES and PR plots for the detection of multicollinearity in a 

BRM. The CERES and PR plots are graphical methods to detect multicollinearity. First, we developed 

a methodology of CERES and PR plots for BRM. Then apply a real data set (heart disease data). Find 

a model coefficient summary and VIF. The value of VIF is greater than 10, show a multicollinearity in 

data set. In BRM GLM, discussed the situations in which the CERES and PR plots provide the useful 

detection. This article addresses the theoretical development and implementation of CERES and PR 

plots for BRM GLM, and also illustrations are made on its advantages. Using real and simulated data, 

we have discussed and reviewed the detection of violations of assumptions in BRM. The CERES and 

PR plots are more useful to handle such situation. Results exhibits that both methods can successfully 

detect the multicollinearity problem in BRM. But the CERES plot performs better than the PR plots in 

the detection of multicollinearity. 
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