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Abstract  

 

Nigeria is recognized as being susceptible to climate change, and global warming 

if not taken care of, will lead to serious problems on livelihoods in Nigeria, 

especially in the area of agricultural activities. Rainfall is a major determinant of 

climate change the world over and climate change is one of the foremost global 

challenge facing humans at the moment. Using monthly time series rainfall data, 

Bayesian structural time series (BSTS) methodology was applied to fit models 

through MCMC algorithm. Also, Seasonal Autoregressive Moving Average 

(SARIMA) models were fitted to the same dataset using Box-Jenkins approach. 

The two models are considered based on their respective capacities to capture 

trend, seasonal and structural components of rainfall data. On the basis of model 

evaluation criteria (RMSE, MAE, MAPE and MASE), the SARIMA model had 

values that were clearly significantly smaller than that of the BSTS time series 

model. This implies that the SARIMA model is more robust in its estimations and 

forecasting abilities. Similarly, the R squared was larger for the SARIMA model 

than the BSTS (MCMC) model indicating that the SARIMA model was a better fit 

for the rainfall data. This study shows that SARIMA model is a more precise and 

robust in dealing with this type of dataset than BSTS (MCMC) model. It is better 

because its computational process using differencing, lags and moving averages 

ensure that the underlying components of the model are properly identified and 

estimated. 

 

Keywords: Bayesian Methods, Climate Change, MCMC Algorithm, Model 

Selection Criterion, Time Series. 

 

   

2.1 Introduction 

 

Rainfall prediction is a difficult endeavor due to the non-linear character of climate processes. In recent 

years, data-driven (empirical) approaches have surpassed knowledge-driven (physical) approaches in 

terms of popularity (Ogundari et al., 2021).  Rainfall is a climatic parameter whose prediction is 

challenging and demanding as the world continues to experience climate change. It affects every 

component of the ecological system including wildlife and vegetation. Therefore, rainfall investigation 

is vital and cannot be over emphasized. Climate events such as flood have been increasing recently all 

over the world and this trend has been attributed to climate change and global warming. One indicator 

of climate change is rainfall (Ogungbenro and Morakinyo, 2014). The study of rainfall is significant to 

the existence of man and seasonal rainfall patterns are very important for continuous supply of water 
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for domestic and industrial uses. Naturally, rainfall variability is of spatial and temporal forms 

(Mohammed and Alehile, 2022). Nigeria is recognized as being susceptible to climate change. Climate 

change and global warming if not taken care of, will lead to serious problems on livelihoods in Nigeria, 

especially in agricultural activities, because the rainfall seasons will be alternated. Floods which 

devastate everywhere, change in temperature and decrease in humidity will lead to natural disasters 

which destroy lives and properties, bringing down the total Gross Domestic Products of the nation. 

In different studies, traditional methods like the autoregressive (AR), moving average (MA), 

autoregressive moving average (ARMA) and the autoregressive integrated moving average models 

(ARIMA) models have been adopted, as seen in (Bari et al., 2015; Onyeka-Ubaka et al., 2021). These 

models are based on assumptions that the seasonal component is deterministic and independent of other 

non-seasonal components with a belief that empirical knowledge of the data be known. A comparative 

study using machine learning techniques has been used to build models for rainfall prediction (Ayodele 

and Precious, 2019). To predict long-term pollution trends in Kolkata, India using limited data 

accessibility, a study of different statistical methods and Bayesian structural time series methods were 

conducted (Narasimha et al., 2018). Almarashi and Khan, (2020) focused on modeling times series 

using the Bayesian Structural Time Series technique (BSTS) on a univariate data-set and compared the 

results with using autoregressive integrated moving average models (ARIMA) models. Cowden et al., 

(2010) examined stochastic rainfall modeling in West Africa. The study examined two stochastic 

rainfall models: Markov Models (MM) and Large Scale Weakening (LARSWG). A first order Markov 

occurrence model with mixed exponential amount was selected as the best option 

for unconditional Markov models.  It was concluded that there was no clear advantage in 

selecting Markov models over the LARSWG model for Domestic Rainfall in West Africa. 

Many researchers (within Nigeria and beyond) have study SARIMA models as very robust for 

rainfall time series analysis in comparison with other family of ARIMA models (Narasimha, et al., 

2018; Xinghua, et al., 2012). Several SARIMA/ adjusted SARIMA models of different dimensions have 

been established as appropriate optimal forecasting models for rainfall time series (Xinghua et al., 2012; 

Nwokike et al., 2020). Identified models were evaluated on the basis of Coefficient of Determination 

(𝑅2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Akaike’s Information Criterion 

(AIC) and Bayesian Information Criterion (BIC). For more studies on SARIMA models, see (Amaefula, 

2021; Ogunrinde, 2012; Bari et al., 2015; Chonge et al., 2015 and Ogundeji et al., 2021). Similarly, 

several other researchers have studied rainfall data using SARIMA or BSTS independently such as: 

(Dabral and Murry, 2017; Lunn et al., 2000; Lee and Heghinian, 1977; Jayawardene, 2005; Aliyu et al., 

2021 and Ogundeji et al., 2023). In this study, two models (BSTS and SARIMA) are considered based 

on their respective capacities to capture trend, seasonal and structural components of rainfall data and 

thus compared. 

South West Nigeria is endowed with the tropical rain forest climate. Abeokuta, Ogun state, 

Nigeria is characterized by a tropical climate with distinct wet and dry seasons (Obot and Onyeukwu, 

2010). Rainfall begins in earnest around March ending and early April each year. Rainfall rest a little in 

August during the summer and retreats towards the end of October and early November. Thus, the 

months of April and May are the first two months into the raining season, while the last two months to 

the end of rainy season in the Sub regions are September and October.  Abeokuta is the capital of Ogun 

State, situated in the South Western region of Nigeria. Abeokuta typically receives 

about 142.49 millimeters (5.61 inches) of precipitation and has 225.62 rainy days (61.81%of the time) 

annually. 

In this research, the theoretical frameworks and fitting of both the BSTS and SARIMA models 

to monthly time series rainfall data from Abeokuta were compared. Bayesian structural time series 

(BSTS) methodology was applied to fit models through MCMC algorithm while Seasonal 

Autoregressive Moving Average (SARIMA) models were fitted to the same dataset using Box-Jenkins 
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approach. On the basis of model evaluation criteria (RMSE, MAE, MAPE and MASE), forecasts were 

generated from a better and more robust model. 

This study is geared towards the choice of an appropriate model for rainfall forecasts in the areas 

of agricultural activities. 

 

2. Materials and Methods  

 

2.1 Data  

 

The data for this work are from weather archive of Ogun state, Nigeria website 

www.meteoblue.com/en/weather/archive/yearcomparison/ogun-state_nigeria. The dataset is monthly 

rainfall recorded in Abeokuta between 2010 and 2022. 

 

2.2 Bayesian Structural Time Series Model (BSTS)  

 
Bayesian Structural Time Series (BSTS) model, which was introduced by Scott and Varian, 2013, for 

the estimation of weather rainfall using contemporaneous-predictors. The BSTS allows for 

i. decomposing the time series data into several latent components that can describe the underlying 

dynamics of the data, such as trend, seasonality and regression, 

ii. variable selection and 

iii. Bayesian model averaging. 

 

Generally, the Bayesian structural model can be written as (Qiu, et al., 2018):  Let Yt denote 

observation t in a real-valued time series, 

𝑌𝑡 = 𝜇𝑡 + 𝑥𝑡𝛽 + 𝑆𝑡 + 𝜖𝑡 ,                                              𝑒𝑡 ∼ 𝑁(0, 𝜎𝑒
2)    (1) 

 

where 𝑥𝑡 denotes a set of regressors. 𝑆𝑡 represents seasonality, 𝛽  represents regression coefficients and 

𝜇𝑡  is the local level term. 

The structural time series models are in fact the building blocks of BSTS. In Structural time series 

model the data comes from some unobserved process known as state space and the data which is 

observed is generated from the state-space with added noise. 

A structural time series model can be described by a pair of equations relating yt to a vector of 

latent state variables 𝛼𝑡   

 𝑦𝑡 =  𝑍𝑡
𝑇𝛼𝑡 + 𝜖𝑡  𝜖𝑡   ~  𝑁(0, 𝜎𝑒

2)      (2) 

 𝛼𝑡 =  [
𝑇𝑡

𝑆𝑡
] ,   Zt   = [1 1]      (3) 

 

𝜶t is the state of the system at t. 

Equation (1) is called the observation equation, because it links the observed data yt with 

unobserved latent state 𝛼𝑡  

 𝛼𝑡+1 =  𝑇𝑡𝛼𝑡  +  𝑅𝑡𝜂𝑡   𝜂𝑡  ~  𝑁(0, 𝜎𝑒
2)      (4) 

 

Equation (2) is called the state/transition equation because it defines how the latent state evolves 

over time. The model matrices Zt, Tt and Rt typically contain a mix of known values (often 0 and 1), 

and unknown parameters. Equations (2) and (3) together are called state-space model. 

The first step in the application of the Bayesian framework on the Structural time series model is 

specifying the prior distribution for each parameter in the model (i.e., for error variances). The error 

variances are treated as parameters of the models in all the equations and have conditionally independent 
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inverse Gamma full conditional distributions assuming independent inverse Gamma priors. The second 

step is to obtain posterior distributions. In BSTS, the forecasts are worked out from the posterior 

predictive distribution but for fitting the model Kalman filtering and MCMC procedures are used. 

Filtering simple means updating our knowledge of the system whenever a new observation is added 

(Almarashi and Khan, 2020). 

 

2.2.1 Model Estimation  

 
Let 𝜙 ≡ (𝜃; 𝛼)𝑇 and 𝜓 denote the set of parameters other than 𝛽 𝑎𝑛𝑑 𝜎𝜀

2 

considering an initial 𝜃 = 𝜃(0)generated from the prior distributions, we obtain a stationary distribution 

𝑝(𝜙|𝑦) using MCMC as follows (Broemeling, 1985; Katarina and Gunardi, 2023): 

(i) Simulate 𝛼 from 𝑝(𝛼|𝑦, 𝜃) using the simulation smoother. 

(ii) Simulate 𝜀 from 𝑝(𝜓|𝑦, 𝛼, 𝛽, 𝜎𝜖
2)  

(iii) Simulate 𝛽 and 𝜎𝜀
2 from 𝑝(𝛽, 𝜎𝜖

2|𝑦, 𝛼, 𝜓)  
By cycling through Steps (i) – (iii) for M times, a sequence of MCMC draws 𝜙(1) − 𝜙(𝑀), is 

obtained. The first 𝑚 samples (also known as burn-in samples) may not be representative for the target 

posterior distribution and hence will be discarded. The remaining sequence of MCMC draws is used to 

estimate the posterior distribution of 𝑦𝑡 by means of (1) and the 𝑡 (Hung, 2017): 

𝑦𝑡 =
1

𝑀−𝑚
∑ 𝑦�̃�

𝑀
𝑖=𝑚+1           (5) 

 

The rainfall dataset does not have any regressors, and therefore a simple Bayesian structural model 

using MCMC algorithms is fitted as follows; 

(i) 1000 MCMC draws 

(ii) Trend and seasonality 

(iii) Prediction created by averaging across the MCMC draws 

(iv) Credible interval generated from the distribution of the MCMC draws 

 

2.3 Seasonal Autoregressive Moving Average (SARIMA) Model 

 
The Seasonal Autoregressive Integrated Moving Average (SARIMA) model fitted to the average 

monthly rainfall data is of the form (Aliyu et al., 2021): 

𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠                                (6) 

 

where, 

𝑝 and 𝑃 = The order of non-seasonal and seasonal Autoregressive process respectively. 

𝑞 and 𝑄= The order of non-seasonal and seasonal Moving Average process respectively. 

𝑑 and 𝐷 = Non-seasonal and seasonal difference order. 

𝑠 = Seasonal period. 

Let {𝑋𝑡} be a time series. Suppose that it is stationary. It is said to follow an autoregressive moving 

average model of order 𝑝 and 𝑞 (denoted by 𝐴𝑅𝑀𝐴 (𝑝,𝑞)) if it satisfies the following equation 

𝑋𝑡 − 𝛼1 + 𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 = 𝜀𝑡 + 𝛽1𝜀𝑡−1 + 𝛽2𝜀𝑡−2 + ⋯ + 𝛽𝑞                (7) 

 

where  𝛼′𝑠 and 𝛽′𝑠 are constants such that (5) be both stationary and invertible and {𝜀𝑡} is a white noise 

process. Equation (5) may as well be written as: 

𝐴(𝐿)𝑋𝑡 = 𝐵(𝐿)𝜀𝑡                                                                                   (8)                                                                 

 

where  
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𝐴(𝐿) = 1 − 𝛼1𝐿 − 𝛼2𝐿2 − ⋯ 𝛼𝑃𝐿𝑝 𝑎𝑛𝑑 𝐵(𝐿) = 1 + 𝛽1𝐿+𝛽2𝐿2 + ⋯ + 𝛽𝑞𝐿𝑞A (L) 

 

𝐿 is the backshift operator defined by 𝐿𝑘𝑋𝑡 = 𝑋𝑡−𝑘. If {𝑋𝑡} is not stationary according to Box and 

Jenkins (1976, 2004), a certain difference of {𝑋𝑡},∇𝑑(𝑋𝑡), might be, where ∇= 1 − 𝐿 and 𝑑 is a positive 

integer. 

Then if {𝑋𝑡} is replaced by∇𝑑(𝑋𝑡), in eqn (5), the model becomes an autoregressive Integrated 

moving average of order𝑝, 𝑑, 𝑞, denoted by an ARIMA (𝑝, 𝑑, 𝑞,) in {𝑋𝑡}. If the series is seasonal of 

period 𝑠 follow a seasonal autoregressive integrated moving average model of order (𝑝, 𝑑, 𝑞) 𝑥(𝑃, 𝐷, 𝑄) 

(denoted by a 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄, 𝑆)𝑠). 

If   

A(L)Φ(𝐿𝑠)Δ𝑑 ∇𝑠
𝐷𝑋𝑡 = B(LΘ(𝐿𝑠)𝜀𝑡       (9) 

  

𝜃𝑞𝐿𝑠
𝑄

 and ∇𝑠
𝐷 is the seasonal difference operator such that ∇𝑠= 1 − 𝐿𝑠. Here 𝑝 is the seasonal 

autoregressive order, 𝑄 is the seasonal moving average order, the 𝜙′𝑠 and the 𝜃′𝑠 are the seasonal 

autoregressive and the seasonal moving average parameters (Ayodele and Precious, 2019; Ameafula, 

2021). 

 

2.3.1 Box-Jenkins Approach for the SARIMA Model Estimation 

 

The Box-Jenkins technique involves finding the best fit of a time series data. It can be used on seasonal, 

non-seasonal, stationary and non-stationary series. The approach starts with model identification which 

include construction of a time plot of the data and inspection of the graph for any anomalies (Cryer and 

Chan, 2008). If the variance grows with time, it will be necessary to stabilize the variance. The next step 

is to identify preliminary values of autoregressive order P, the order of differencing d, the moving 

average order q and their corresponding seasonal parameters P, D and Q. 

Here, the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) are 

the most important elements (Shumway and Stoffer, 2008). The ACF measures the amount of linear 

dependence between observations in a time series that are separated by a lag q. 

The PACF helps to determine how many autoregressive terms p is necessary. The parameter d is 

the order of difference frequency from non-stationary time series to stationary series. Furthermore, a 

time series plot and ACF of data will typically suggest whether any differencing is needed. If 

differencing is called for, the time plot will show some kind of linear trend. when preliminary values of 

D and d have been fixed. Furthermore, parameters can be chosen using Akaike’s Information 

Criterion(AIC) to determine the values of the parameters (Shumway and Stoffer, 2008). 

The Box-Jenkins’ method is concluded with parametric test and diagnostic checks which include 

the analysis of the residuals as well as model comparisons. If the model fits well, the standardized 

residuals should behave as an independent and identically distributed sequence with mean zero and 

variance one Cryer and Chan, 2008). A standardized residuals plot or a Q-Q plot can help in identifying 

the normality (Shumway and Stoffer, 2008). Once a model has been identified and all the parameters 

have been estimated, future values of a time series with these models are generated. 

 

2.3.2 Model Selection Criterion 

 

The following criteria were considered in this study to compare the most appropriate fitted models 

either using the BSTS or the SARIMA models (Ogundeji et al., 2022); 

(i) Root Mean Sum of Square Error (RMSE) 

(ii) Coefficient of determination, 𝐑𝟐 
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(iii) Mean Sum of Square Error (MSE) 

(iv) Mean Absolute Error (MAE) 

(v) Mean Absolute Percentage Error (MAPE) 

(vi) Akaike Information Criteria (AIC) 

 

3. Results and Discussion 

 

3.1 Descriptive Analysis 

 
The dataset is monthly rainfall recorded in Abeokuta between January 2010 and December 2022 (i.e. 

156 months). Table 1 is the summary statistics for the average monthly rainfall (millimeters). The 

highest average monthly rainfall recorded in Abeokuta between 2010 and 2022 is 569.42mm and the 

lowest was 0.60mm and mean was 136.98mm. The time series plot of the average monthly rainfall in 

Figure 1 shows trend and seasonal components. That is, recurring patterns/cycles that appear to occur 

annually. 

 

Table  1: Descriptive Statistics for Average Monthly Rainfall 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

0.60 45.02 121.06 136.98 212.28 569.42 

 

 
Figure 1: Time Series Plot of Average Monthly Rainfall (Millimeters) 

 

3.2 BSTS Model Using Markov Chain Monte Carlo (MCMC) 

 

Table 2 below shows the summary statistics of the posterior distribution of the BSTS (MCMC) model 

on average monthly rainfall with one thousand number draws, two number chains and one thousand 

number of tunes. 

 

Table 2: BSTS (MCMC) Model Summary Statistics Result. 

 Posterior 

Mean 
Sd hdi_2.5% hdi_97.5% mcse_mean mcse_sd ess_bulk ess_tail 

μ 136.982 8.549 120.829 152.256 0.194 0.137 1956.0 1186.0 

σ 107.083 6.042 95.821 118.292 0.148 0.105 1655.0 1249.0 
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Table 2 gives the BSTS (MCMS) model statistics in terms of the overall mean μ and standard deviation 

σ which include the posterior mean, standard deviation and effective sample sizes (ess). The hdi_2.5% 

and 97.5% percentiles of the posterior sample for each parameter give a 95% posterior credible interval 

(the range of values within which the parameter falls with probability 0.95). The Monte Carlo Standard 

Error (MCSE) is an indication of how much error is in the estimate due to the fact that MCMC is used. 

As the number of iterations increases the MCSE→0. 

Also obtained are model evaluation criterion statistics on identified BSTS (MCMC) model on the 

average monthly rainfall (2010 – 2022) as shown in Table 3. 

 

Table 3: Model Evaluation Criterion Statistics for Estimated BSTS (MCMC) Model 

RMSE 𝐑𝟐 MSE MAE MASE MAPE 

155.064 -0.079 24044.794 125.746 3.960 986.182 

 

Table 3 gives the results of the estimated BSTS (MCMC) model based on the adopted criteria for the 

purpose of comparison with the SARIMA model. 

 

3.3 Seasonal Autoregressive Moving Average (SARIMA) Model 

 

3.3.1 SARIMA Model of Average Monthly Rainfall from January 2010 to December 2022 

 

Figure 2 shows the time plots of the rainfall data and inspection of the graphs shows the decomposition 

of the series data through the breakdown of trend, seasonality, and residuals. 

 

 
Figure 2: Time Series Decomposition Plots of Average Monthly Rainfall. 

 

Using results of Dickey-Fuller Test to check for stationary of the rainfall data, Table 4 shows that the 

series is not stationary given that the test Statistics is higher than the critical value of 5% level of 

significance. 

 

Table 4: Results of Dickey-Fuller Test for Stationary of Rainfall Series 

Test Statistics p-Value Lags Used Observations Critical Value (5%) 

-2.7553 0.0649 13.0000 106 -2.8892 
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In Figure 3, the plots show the ACF, PACF and the distribution of the dataset, The ACF drops to 

zero relatively slowly and show that the series is non-stationary. 

The series has an interesting behavior, there is a sequential significant negative autocorrelation 

starting at lag 6 and repeating each 12 months, it is because of the difference in the seasons. 

 

 
Figure 3: Time Series Plot of ACF, PACF, and Distribution of the Average Monthly Rainfall 

 

Also, from lag 12 and sequentially from every 12 lags there is a significant positive 

autocorrelation. The PACF shows a negative spike in the first lag and a drop to zero PACF in the 

following lags. 

This behavior between the ACF and PACF plots suggests an AR (1) model and also a first 

seasonal difference ( 𝑌𝑡 − 𝑌𝑡 − 12). There is need to plot the stationarity function again with the first 

seasonal difference to see if we will need some SAR (P) or SMA (Q) parameter: 

 

3.3.2 Stationarity and Differencing 

 

After differencing the series once, the results of Dickey-Fuller Test are shown in Table 5 that the Test 

Statistic is lower than the Critical Value of 5%. Hence the series seems to be stationary. 

 

Table 5: Results of Dickey-Fuller Test for Stationary of Rainfall Series 

Test Statistics p-Value Lags Used Observations Critical Value (5%) 

-3.4919 0.0082 12.0000 106 -2.8892 

 

https://doi.org/10.22452/josma.vol7no1.5


Ogundeji & Okemakinde / https://doi.org/10.22452/josma.vol7no1.5      Vol 7(1), 54-67. 2025 

 

62 
 

 
Figure 4: Differencing Plot, ACF and PACF Plots and Distribution of the Average Monthly 

Rainfall 

 

In Figure 4, the seasonal differencing plots shows the ACF, PACF and the distribution of the 

dataset, the series is stationary. 

Also, after seasonal differencing the series once, the results of Dickey-Fuller Test as shown in 

Table 6 is that the test statistic is lower than the Critical Value of 5%. Hence the series seems to be 

stationary. 

 

Table 6: Results of Dickey-Fuller Test for Stationary of Rainfall Series 

Test Statistics p-Value Lags Used Observations Critical Value (5%) 

-4.4960 0.0002 11.0000 96 -2.8892 

 

 
Figure 5: Seasonal Differencing Plot, ACF and PACF Plots and Distribution of the Average 

Monthly Rainfall 
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In Figure 5, the seasonal differencing plots shows the ACF, PACF and the distribution of the 

dataset, the series is stationary. As the plots above showed, the first ACF lags have a gradual decay, 

while the PACF drops under the confidence interval after the first lag, this is an AR signature with a 

parameter of 1, so this is an AR (1) model. 

 

3.3.3 SARIMA - Baseline Model 

 

As we used a first seasonal difference, the ACF and PACF showed a significant drop in the 12th lag, it 

means an SMA signature with a parameter of 1 lag, resuming this is an SAR (1) with a first difference. 

Initially I’m going to work with the following (p, d, q) orders: (1, 1, 0), and with the following seasonal 

(P, D, Q, S) orders (0, 1, 1, 12) and as the series has a clear uptrend.  

SARIMA (1, 1, 0), (0, 1, 1, 12). 

 

Table 7: Estimated SARIMA Model (1,1,0) x (0,1,1)12 

 coef std err Z P>|z| 0.025 0.975 

ar.L1 -0.3775 0.049 -7.634 0.000 -0.474 -0.281 

Ma.S.L12 -0.7803 0.160 -4.889 0.000 -1.093 -0.467 

sigma2 6175.9513 521.018 11.854 0.000 5154.774 7197.129 

 

Based on Table 7, the model chosen was the SARIMA (1,1,0) x(0,1,1)12 model, given by   

∇12𝑋𝑡 = −0.3775𝑋𝑡−1 − 0.7803 ∈𝑡−12= 6175                                                                    (8) 

 

Table 7 presents parameter estimates for the SARIMA (1,1,0)x(0,1,1)12 model, it indicates that both 

seasonal and non-seasonal coefficients are all significant except the seasonal autoregressive and non-

seasonal second components of Moving average because its probability value (0.43654) is greater than 

common choices of 1%, 5% and 10% level of significance. This could be as a result of the fact that the 

second spike of ACF in Figure 4 is much away from the interval. 

 

3.4 Model Evaluation 

 

Model evaluation criterion statistics on identified SARIMA (1, 1, 0) x (0, 1, 1)12 model on the average 

monthly rainfall (2010 – 2022) as shown in Table 8 below. 

 

Table 8: Model Evaluation Criterion Statistics for Estimated SERIMA Model 

RMSE 𝐑𝟐 MSE MAE MASE MAPE 

09.488 -0.846 9699.953 92.922 3.061 528.661 

 

Based on the model selection criteria adopted for this study and comparing the results obtained in Table 

3 and Table 8, the SARIMA model has values that are clearly significantly smaller than that of the BSTS 

model apart from R squared.  Similarly, the R squared is larger for the SARIMA model than the BSTS 

(MCMC) model indicating that the SARIMA model is a better fit for the rainfall data. 

 

3.4.1 Diagnostic Check for SARIMA Model  

 

Presented in Figure 6 is (i) the plot of the Current and Predicted values through the time, (ii) Residuals 

vs. Predicted values in a scatter plot (iii) Q-Q Plot showing the distribution of errors and its distribution 

(iv) Autocorrelation plot of the Residuals, respectively. 
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Figure 6: Diagnostic Plots for Adequacy of the Estimated SARIMA Model 

 

The following can be deduced from Figure 6; 

(i) Predictions fit very well on the current values. 

(ii) The Error vs. Predicted values has a linear distribution.  

(iii) The Q-Q Plot shows a normal pattern with some little outliers and, 

(iv) The autocorrelation plot shows a positive spike over the confidence interval just at the first lag, 

as such there is no need for more changes. 

 

Based on the identified SARIMA model the Figure 7 is the extrapolated prediction in the test set for the 

last 12 months. The SARIMA parameters were well fitted, the predicted values following the real values 

and also the seasonal pattern. The plot shows the comparison between the actual values and predicted 

values for SARIMA (1,1,0) x (0,1,1)12. 

 
Figure 7: Forecast plot of rainfall using identified SARIMA model 

 

3.5 Comparison BSTS Model and SARIMA Model  

 

Table 9 gives the summary of model selection criteria for selecting a better or more appropriate model 

between BSTS Model and SARIMA Model. 
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Table 9: Model Comparison Between BSTS Model and SARIMA Model 

MODELS RMSE MAE MAPE MSE MASE 𝐑𝟐 

BSTS (MCMC) 155.064 125.746 986.182 24044.794 3.960 -0.079 

SARIMA 98.488 92.922 528.661 9699.953 3.061 -0.846 

 

The RMSE, MAE, MAPE and MASE values of the SARIMA time series model are found to be 

significantly smaller than that of BSTS (MCMC) model implying that the SARIMA time series model 

is more robust in its estimations and forecasting abilities while the R-squared is larger for the SARIMA 

time series model than the BSTS (MCMC) model implying that the SARIMA time series model fitted 

the data better than the BSTS (MCMC) model. 

The result of this study is in line with the conclusion in the work of Gianacsa et al., (2023) in 

which it cautions that using BSTS, as the choice of explanatory time series may lead to incorrect 

attribution of outcomes to the study effect. BSTS can incorrectly attribute an existing secular trend to 

the intervention if the secular trend is not represented in the explanatory time series. 

 

4. Conclusion 

 

The Box-Jenkins methodology identified SARIMA (1,1,0) x (0,1,1)12 as the most appropriate model 

for the rainfall data series after differencing at level of significance of 0.05. The SARIMA time series 

model out-perform the Bayesian Structural Time Series model implemented by Monte Carlo algorithm 

in the fitting of rainfall data in Abeokuta, Ogun State, Nigeria. 

This study shows that SARIMA model is a more precise and robust in dealing with this type of 

dataset than BSTS (MCMC) model. It is better because its computational process using differencing, 

lags and moving averages ensure that the underlying components of the model are properly identified 

and estimated. However, BSTS (MCMC) computes uncertainty in a way that measure the posterior 

uncertainty of the model. 
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