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Abstract  

 

Type 2 diabetes is a major worldwide health issue, necessitating accurate and 

effective prediction models for timely intervention. Traditional machine learning 

(ML) models often underperform with imbalanced datasets and complex data 

relationships, resulting in suboptimal predictive accuracy.  This study applies 

advanced ensemble methods, such as random forest, boosting, bagging, and 

stacking, to enhance diabetes onset prediction using a synthetic minority over-

sampling technique (SMOTE)-balanced data from the Pima Indians Diabetes 

Database. The research involves extensive data processing, feature engineering, 

and cross-validation. Model performance is assessed using several evaluation 

metrics, such as F1-score and AUC-ROC (Area Under the Curve-Receiver 

Operating Characteristic), along with accuracy, precision, and recall. The findings 

indicate that ensemble techniques, especially random forest, bagging, and 

boosting, surpass traditional models, achieving an accuracy of 88%, recall of 82%, 

and precision of 85%. These findings emphasize the effectiveness of ensemble 

learning in enhancing predictive analytics for healthcare, supporting early 

diagnosis, and personalized patient care. Future research should explore integrating 

deep learning models with diverse datasets to improve predictive accuracy and 

generalizability. 

 

Keywords: Diabetes Onset Prediction, Ensemble Learning, Machine Learning in 

Healthcare, SMOTE, Type 2 Diabetes Mellitus. 

 

   

1. Introduction 

 

Type 2 diabetes mellitus (T2DM) is a prevalent and significant chronic condition impacting millions 

globally. As of 2023, over 540 million adults are affected, with forecasts indicating that this figure could 

rise to 700 million by 2045. Figure 1 illustrates the projected global increase in the prevalence of 

diabetes over time (International Diabetes Federation, 2021). Diabetes is marked by high levels of blood 

glucose, which result from either inadequate insulin production or the body’s ineffective use of insulin. 

This condition can lead to severe complications, such as heart disease, kidney failure, and nerve damage 

(American Diabetes Association, 2020; Saeedi et al., 2019). The growing prevalence of T2DM 
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underscores the urgent need for cost-effective prediction and management strategies to enable early 

intervention and prevent disease progression (Cho et al., 2018; Fawwad et al., 2019). 

 

 
Figure 1. A projected global increase in diabetes prevalence over time, based on data from the IDF 

diabetes atlas 10th edition (2021) 

 

 Conventional diagnostic techniques, such as fasting blood sugar assessments and oral glucose 

tolerance evaluations, are often invasive, costly, and inaccessible, particularly in low-resource settings 

(Vettoretti et al., 2018; Williams et al., 2021). Due to their financial and logistical burdens, these 

diagnostic approaches may discourage individuals from seeking timely diagnosis and treatment due to 

their financial and logistical burdens. Moreover, they lack the capability for continuous monitoring, a 

critical requirement for effective diabetes management (Nathan et al., 2009; Tankeu et al., 2021). In 

contrast, predictive models leveraging machine learning (ML) techniques offer a non-invasive and 

scalable alternative by utilizing accessible health metrics, such as glucose levels, BMI, diabetes pedigree 

function, and age (Chen et al., 2022). While initial development costs may be higher, these models 

present a more sustainable approach for large-scale diabetes screening and management, particularly in 

resource-constrained environments (Mayer et al., 2020). 

 In diabetes research, traditional ML models, such as logistic regression, decision trees, and 

support vector machines, have been widely employed in diabetes prediction. However, these models 

often struggle with challenges such as class imbalance – where non-diabetes cases significantly 

outnumbered diabetes cases- and their inability to capture non-linear and complex relationships within 

the data (Kavakiotis et al., 2017; Meigs et al., 2006; Sarker, 2021). Studies indicate that these limitations 

can result in high false negative rates, reduced sensitivity, and suboptimal performance in predicting 

diabetes onset (Elhaj et al., 2023; Rashighi & Harris, 2017, Subramanian & Li, 2019, Patel et al., 2021).  

 To address these limitations, advanced ensemble techniques such as stacking and gradient 

boosting have gained attention. Ensemble methods combine multiple models to enhance predictive 

accuracy and mitigate overfitting by leveraging diverse learning algorithms (Breiman et al., 2017). 

Recent studies have highlighted the potential of synthetic sampling techniques, such as the Synthetic 

Minority Oversampling Technique (SMOTE), to improve model sensitivity and generalizability when 

applied to imbalanced medical datasets (Smith et al., 2022; Zhang et al., 2023). While these approaches 

have shown promise, there remains limited research explores the full potential of advanced ensemble 

methods, particularly stacking and gradient boosting, in addressing the complexities of diabetes 

prediction (Krawczyk, 2016; Wu et al., 2020; Zou et al., 2018).  

 This study aims to bridge this gap by systematically evaluating the performance of advanced 

ensemble methods in predicting diabetes onset using the Pima Indians Diabetes Database. The study 

applies SMOTE to balance the dataset and evaluates models such as random forest, bagging, boosting, 

and stacking against traditional benchmarks. All the ML Models are assessed using several evaluation 

metrics: accuracy, F1 score, precision, recall, and the Area Under the Receiver Operating Characteristic 
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Curve (AUC-ROC) to compare model performance. Advanced techniques, particularly stacking and 

gradient boosting, are assessed for their ability to capture complex patterns, manage class imbalance, 

and improve predictive accuracy. 

 In summary, this study seeks to fill a critical gap in the literature by demonstrating the 

effectiveness of ensemble learning techniques in diabetes prediction. It contributes to developing 

scalable, cost-effective frameworks for early screening and personalized care. These findings can 

enhance clinical decision-making, improve health outcomes, and inform public health strategies, 

particularly in resource-constrained settings. 

 

2. Materials and Methods  

 

The methodology for this research involves applying various machine-learning techniques to predict the 

onset of diabetes in patients using a well-known dataset. Logistic regression, random forest, and SVM 

are used as benchmark models due to their reliability and established effectiveness in similar diagnostic 

studies. Advanced ensemble methods—bagging, boosting, and stacking—are also implemented to 

enhance model performance, particularly in capturing complex patterns and improving prediction 

accuracy.  

To ensure comparability, all models underwent the same preprocessing steps. Min-max 

normalization was applied to standardize feature values. SMOTE was used to address the class 

imbalance by generating synthetic samples for minority cases, and correlation analysis was performed 

to select independent features and reduce multicollinearity. 

 

2.1 Data Description 

 

This study employs a well-established dataset on diabetes prediction involving Pima Indian women, 

which is publicly available through the UCI Machine Learning Repository. It comprises 768 records of 

patients aged 21 years and older. The dataset includes a variety of diagnostic attributes relevant to 

diabetes prediction. These attributes encompass the number of times a patient has been pregnant, 

glucose levels in the blood, blood pressure measured at rest, the thickness of the triceps skinfold, insulin 

levels after a two-hour test, body mass index (BMI), a hereditary diabetes risk score known as the 

diabetes pedigree function, and the patient's age. The target variable in the dataset is binary, representing 

whether the individual has been diagnosed with diabetes (1) or not (0). An initial inspection confirmed 

no missing values, ensuring the data's completeness and reliability for analysis. 

 

2.2 Data preprocessing 

 

Several preprocessing steps are applied to prepare the dataset for machine learning models, enhancing 

data quality and ensuring consistency. These steps optimize model performance and improve 

generalization on unseen data. This study uses normalization, data balancing  to address class imbalance, 

and feature selection to prepare the dataset for accurate diabetes onset prediction. 

 

2.2.1 Normalization and Scaling 

 

Min-max scaling was applied to ensure each feature contributes uniformly to the model (Bishop, 2006). 

This method adjusts the values of glucose, BMI, and insulin variables into a range between 0 and 1, 

allowing all features to be on the same scale. This technique is particularly effective for algorithms that 

rely on distance measurements, as it prevents certain features from disproportionately influencing the 

results. Min-max scaling was chosen over other methods, such as standardization because it preserves 
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the relationships between the original data points while ensuring that no feature dominates due to its 

scale (Goodfellow et al., 2016). Additionally, since some models, like support vector machines (SVM) 

with an RBF kernel, are sensitive to the magnitude of input data, Min-max scaling improves their 

performance by keeping the data within a bounded range. 

 

2.2.2 Handling Imbalanced Data 

 

The dataset showed a clear imbalance, with a greater number of non-diabetic cases when compared to 

diabetic ones. To tackle this issue, the synthetic minority over-sampling technique (SMOTE) is utilized 

to create new synthetic samples for the minority class, specifically diabetic cases (Chawla et al., 2002; 

Leevy et al., 2018). SMOTE creates new data points by identifying similar instances in the feature space 

and generating synthetic examples along the segments connecting these points. This method helps avoid 

the pitfalls of simply duplicating data and instead enhances the diversity of the minority class 

(Krawczyk, 2016). By balancing the dataset in this way, the model becomes less biased towards the 

majority class, improving its ability to detect diabetic cases. The application of SMOTE ensures an 

equal representation of both classes, which is essential for developing an accurate and unbiased 

predictive model.  

 

2.2.3 Feature Selection and Engineering 

 

Feature engineering involves generating new variables and identifying the most relevant ones to 

improve model performance (Kavakiotis et al., 2017). The goal is to boost the models' predictive 

capabilities by extracting additional information from the existing dataset and eliminating features that 

add little value or are redundant. For instance, a new variable, BMI per Age, was introduced by dividing 

the BMI by the individual’s age. This ratio could help highlight the relationship between BMI and age, 

uncovering patterns that might not be apparent when these variables are examined individually. 

Additionally, a Glucose-Insulin Ratio is derived by dividing plasma glucose concentration by two-hour 

serum insulin levels, capturing the dynamic between glucose and insulin, which is essential for assessing 

diabetes risk. 

In addition to creating new features, correlation matrix analysis is used to identify highly 

correlated features, which are removed to reduce multicollinearity and avoid overfitting. Important 

predictors such as glucose levels, BMI, age, and genetic risk factors are retained due to their significant 

relationships with the target variable. This process ensures that only the most impactful and independent 

features are used for model training, improving overall performance and interpretability. 

 

2.3 Model Selection and Rationale 

 

Several machine learning models are implemented to predict diabetes onset, each chosen for its specific 

strengths in handling the dataset's characteristics and their proven effectiveness in medical diagnostics. 

All models are developed in R, utilizing a variety of powerful libraries for efficient implementation. 

 

2.3.1 Logistic Regression (LR) 

 

LR is implemented through the glm() function in the R’s core statistics package. This method is 

preferred due to its straightforwardness and efficiency in handling binary classification problems 

(Breiman et al., 2017). It calculates the likelihood that a given instance falls into a particular category 

(e.g., diabetic or non-diabetic) using the logistic function (Hosmer et al., 2013). 

 

https://doi.org/10.22452/josma.vol6no2.2


Rahaman et.al / https://doi.org/10.22452/josma.vol6no2.2                       Vol 6(2), 11-28. 2024 

 

15 
 

𝑃( 𝑌 = 1 ∣ 𝑋 ) =  
1

1+ exp [−(𝛽0 +𝛽1  𝑋1+ −−−− + 𝛽𝑛  𝑋𝑛) ]                                                               (1) 

 

where, P (Y = 1 ∣ X) represents the probability that the outcome variable equals 1, given the input features 

𝑋, and β0, β1 -----, βn are coefficients estimated by minimizing the log-loss function: 

  

𝐿(𝛽) =  −
1

𝑚
 ∑ [𝑦𝑖 . ln(𝑝𝑖) + (1 − 𝑦𝑖) . ln(1 − 𝑝𝑖)]𝑚

𝑖=1                                                      (2) 

 

where 𝑚 represents the total number of data points, 𝑦𝑖 corresponds to the label for the 𝑖-th instance, 𝑝𝑖 

is the estimated probability of the 𝑖-th instance belonging to class 1.  

 

2.3.2 Random Forest (RF) 

 

The RF model is applied using the randomForest package. This approach constructs an ensemble 

of decision trees by training each tree on a randomly sampled subset of the dataset with replacement 

(bootstrap sampling). This technique, a variation of bagging, introduces additional randomness by 

selecting a random subset of features at each split in the trees, enhancing model diversity and reducing 

overfitting. In this study, 100 decision trees are utilized, and their maximum depth is fine-tuned through 

cross-validation to optimize model performance. Each tree is built by splitting the data based on 

measures like Gini impurity or information gain (entropy), ensuring that splits maximize the purity of 

the resulting nodes: 

 

𝐺𝑖𝑛𝑖(𝐷) = 1 −  ∑ 𝑝𝑖
2𝐶

𝑖=1                                                                                                   (3) 

 

𝐻(𝐷) =  − ∑ 𝑝𝑖  log (𝑝𝑖)𝐶
𝑖=1                                                                                          (4) 

 

For classification tasks, the final prediction is determined by majority voting across all trees, 

while regression tasks use an averaged result. This combination of random sampling of both data and 

features makes random forest uniquely robust compared to traditional bagging, improving 

generalization to unseen data while minimizing the risk of overfitting. 

 

2.3.3 Support Vector Machines (SVM) 

 

SVM excels in working with datasets with many features and is well-suited for identifying complex 

patterns that separate different classes. This is implemented using the e1071 package in R. The 

objective is to maximize the margin between classes: 

 
𝑚𝑎𝑥
𝑤, 𝑏  

𝑚𝑖𝑛
𝑖

 
𝑦𝑖(𝑤.𝑥𝑖+𝑏)

‖𝑤‖
                                                                                                       (5) 

 

Here, 𝑤 signifies the weight vector, while 𝑏 represents the bias term. The radial basis function 

(RBF) kernel is used to handle non-linear separations, with hyperparameters C (cost), and 𝛾 (gamma) 

tuned for optimal performance. The grid search explored values for C ranging from 0.1 to 100 in 

logarithmic scale and 𝛾 values from 0.001 to 1. This process identified the optimal parameters that 

minimized the classification error on the validation set. 
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2.3.4 K-Nearest Neighbors (KNN) 

 

The KNN model uses the class package. This non-parametric approach assigns a data point to a 

category by evaluating the most prevalent class among its 𝑘 closest neighbors. The number of neighbors 

is optimized through a grid search method, testing values from 1 to 20.  The separation between 

instances is often determined using Euclidean distance, which calculates the shortest distance between 

two points in space. 

 

𝑑(𝑥𝑖 , 𝑥𝑗) =  √∑ (𝑥𝑖𝑘 −  𝑥𝑗𝑘)2𝑛
𝑘=1                                                                                    (6) 

 

where xik and xjk are the feature values of instances i and j. 

 

2.4 Ensemble Methods  

 

Advanced ensemble techniques, including stacking, boosting, and bagging, are employed using the 

caret, xgboost, and randomForest, packages to enhance model performance by combining 

the outputs of different models. 

 

2.4.1 Stacking 

 

The caretEnsemble package is used to combine the base models. This approach enhances 

classification performance by using the predictions from the base models to train a meta-model. This 

study implements KNN, Neural Network (NNET), and LR as base models, with logistic regression as 

the meta-model (Lecun et al., 2015). Stacking enables the model to benefit from each base model's 

unique strengths and weaknesses, leading to a more reliable overall prediction. 

 

2.4.2 Boosting 

 
The Gradient Boosting Machine (GBM) is implemented using the xgboost package, which 

sequentially builds decision tree models. In each iteration, a new decision tree is added to correct the 

prediction errors made by the previous trees, allowing the model to improve its performance iteratively. 

Gradient boosting works by adjusting the weights of incorrectly predicted samples in each iteration, 

which forces subsequent models to focus on these challenging cases. This iterative correction process 

reduces overall prediction error and enhances model accuracy, making gradient boosting highly 

effective for structured data with complex patterns. The general form of a boosting model can be 

described as: 

 

𝑓(𝑥) =  ∑ ∝𝑡 ℎ𝑡(𝑥)𝑇
𝑡=1                                                                                                   (7) 

 

where ht(x) represents the weak learner at iteration t, and αt is the weight assigned to that learner.  

For the GBM model, crucial hyperparameters such as the tree count, learning rate, and tree depth 

are optimized.  A parameter tuning process using grid search with 10-fold cross-validation explores 

different values for key hyperparameters, including n_estimators between 50 and 500, learning rates 

from 0.01 to 0.1, and tree depths from 3 to 10. The optimal combination is selected based on 

performance metrics like accuracy and AUC-ROC, ensuring the sequence of models in the boosting 

process effectively minimizes errors and improves generalization. 

 

https://doi.org/10.22452/josma.vol6no2.2


Rahaman et.al / https://doi.org/10.22452/josma.vol6no2.2                       Vol 6(2), 11-28. 2024 

 

17 
 

2.4.3 Bagging (Bootstrap Aggregating) 

 

Bagging is used in this study to reduce variance and improve model stability. In bagging, multiple 

models are trained on different bootstrapped samples (random subsets with replacement) of the data, 

and the final prediction is obtained by aggregating their outputs, typically using majority voting for 

classification or averaging for regression. 

This study implements bagging using the random forest algorithm through the randomForest 

package, constructing an ensemble of 100 decision trees. Unlike traditional bagging, which trains each 

model on the entire feature set, random forest introduces feature randomness by selecting a subset of 

features at each split. This added randomness helps reduce correlation among the trees, improving 

generalization and minimizing overfitting. Bagging improves predictive stability and accuracy by 

averaging predictions across the ensemble, making it particularly effective for the Pima Indians Diabetes 

Database. This method enhances model robustness, ensuring reliable predictions on unseen data. 

 

2.5 Evaluation Metrics 

 

The model’s performance is assessed through key metrics detailed in equations (8) to (11). In these 

equations, T+ represents the true positives (correctly predicted positive cases), T- represents the true 

negatives (correctly predicted negative cases), F+ denotes false positives (incorrectly predicted positive 

cases), and F- signifies false negatives (incorrectly predicted negative cases). 

 

Accuracy =  
𝑇++ 𝑇−

𝑇++ 𝑇−+ 𝐹++ 𝐹−                                                                                             (8) 

 

Detection rate =  
𝑇+

𝑇++ 𝐹−                                                                                                 (9) 

 

Precision =  
𝑇+

𝑇++ 𝐹+                                                                                                        (10) 

 

F1 score = 2 ×
(Precision ×detection rate) 

(Precision+detection rate)
                                                                      (11) 

 

2.6 Cross-Validation 

 

Ten-fold cross-validation is employed to ensure comprehensive model evaluation. This method divides 

the dataset into ten equal segments, utilizing nine segments for training and one for testing, repeating 

this procedure ten times, with each segment serving as the test set once. The outcomes from cross-

validation are consolidated by computing the average and standard deviation of the performance 

indicators, such as accuracy and F1 score across all folds. This approach mitigates the risk of overfitting 

and ensures that the model generalizes effectively to novel data. 

 

2.7 Code Implementation 

 

The entire study is conducted in R, utilizing various packages including caret, randomForest, 

xgboost, e1071, and caretEnsemble. These models are trained and evaluated on a local 

machine with sufficient computational resources such as  16 GB RAM, quad-core processor). 

 

 

https://doi.org/10.22452/josma.vol6no2.2


Rahaman et.al / https://doi.org/10.22452/josma.vol6no2.2                       Vol 6(2), 11-28. 2024 

 

18 
 

3. Results and Discussion 

 

This section presents the study's findings and provides a detailed discussion of its results. The 

performance of various machine learning models for predicting diabetes onset is analyzed through key 

evaluation metrics such as accuracy, precision, recall, F1 score, and ROC-AUC. Furthermore, a 

comparison is drawn between traditional models like logistic regression and advanced ensemble 

techniques such as random forest and boosting. The outcomes are discussed in the context of their 

practical implications for improving diabetes prediction accuracy. The section begins with a summary 

of the data analysis and preprocessing results, offering insights into the distribution and characteristics 

of key variables before evaluating model performance. 

 

3.1 Data Summary 

 

Table 1 presents descriptive statistics for essential variables in the dataset. The outcome variable, 

signifying the presence or absence of diabetes, has an average value of 0.35, suggesting that around 

35% of individuals in the dataset are diabetic. These statistics provide a foundational understanding of 

the dataset and highlight the distribution of variables critical for predicting diabetes. 

 

Table 1.  Descriptive Statistics of Selected Variables from the Pima Indians Diabetes Dataset 

Statistic Glucose BMI Diabetes PF Age Outcome 

Type of Data Integer Float Float Integer Integer 

Count 768 768 768 768 768 

Mean 120.89 31.99 0.47 33.24 0.35 

Standard Deviation 31.97 7.88 0.33 11.76 0.48 

Min (Minimum) 0.00 0.00 0.08 21.00 0.00 

25% (1st Quartile) 99.00 27.30 0.24 24.00 0.00 

50% (Median) 117.00 32.00 0.37 29.00 0.00 

75% (3rd Quartile) 140.25 36.60 0.63 41.00 1.00 

Max (Maximum) 199.00 67.10 2.42 81.00 1.00 

 

3.2 Explorative Data Analysis 

 

A comprehensive examination of the dataset was conducted to identify patterns and relationships, 

encompassing univariate, bivariate and multivariate analysis. 

 

Univariate analysis: Figure 2 presents histograms and box plots of key variables. These visualizations 

reveal that variables like Glucose and BMI are right-skewed, with higher frequencies of lower values 

and some extremely high values. This skewness suggests that most patients have relatively normal levels 

of these variables, while a subset exhibits elevated levels indicative of higher diabetes risk. 

 

Bivariate analysis: Figure 3 presents scatter plots and kernel density estimation (KDE) plots for 

Glucose and BMI against the outcome variable. These plots show a strong association between higher 

Glucose levels and an increased likelihood of diabetes. Similarly, higher BMI values correlate with a 

greater risk of diabetes. The KDE plots illustrate the density of data points, emphasizing the importance 

of Glucose and BMI as key predictors of diabetes onset. 
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Multivariate analysis: A correlation heatmap illustrating relationships between all variables is depicted 

in Figure 4. The heatmap indicates that Glucose has the strongest positive correlation with diabetes 

(correlation coefficient of 0.47), followed by BMI (0.29). Other variables, such as Blood Pressure and 

Insulin, show weaker correlations, suggesting they may be less critical predictors. This analysis guided 

the feature selection process, highlighting the most influential predictors for model training. 

 

  

  
Figure 2. Histogram and Boxplot for Univariate Analysis of Key Variables 

 

  

  
Figure 3. Scatter and KDE Plots for Bivariate Analysis of Key Variables against Outcome 
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Figure 4. Correlation Heatmap for Multivariate Analysis of All Variables 

 

3.3 Feature Scaling 

 

Figure 5 presents a bar chart of the top features for diabetes prediction after scaling. Glucose levels, 

BMI, Age, and the Diabetes Pedigree Function emerge as the primary factors influencing diabetes risk. 

 

3.4 Distribution of Classes Before and After Applying SMOTE 

 

Figure 6 illustrates the distribution of classes both before and after applying SMOTE. Initially, the 

dataset comprised 500 samples of non-diabetic cases (class 0) and 268 samples of diabetic cases (class 

1). Applying SMOTE balanced the dataset, ensuring that the machine learning models receive an 

equitable representation of both classes, which enhances their predictive accuracy for both outcomes. 

 

 
Figure 5. Bar Chart of Top Features for Diabetes Prediction After Scaling 
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Figure 6. Class Distribution Before and After SMOTE 

 

3.5 Model Performance 

 

Following the EDA, several machine learning models are implemented to predict diabetes onset, with 

their performance assessed using various metrics such as accuracy, precision, sensitivity, F1 score, and 

AUC-ROC. Table 2 presents an overview of the evaluation results for each model on the test data. 

Random forest (RF) and bagging emerged as top performers with high accuracy (88% and 87%, 

respectively), precision, and AUC-ROC values. These results underscore the efficacy of ensemble 

methods in achieving accurate and consistent predictions. In contrast, logistic regression (LR) and k-

nearest neighbors (KNN) displayed moderate accuracy. At the same time, support vector machine 

(SVM) and gradient boosting demonstrated balanced performance metrics, making them versatile 

options. 

To ensure a comprehensive performance evaluation, cross-validation is conducted. Table 3 

presents the cross-validation results, further validating that random forest (RF) and bagging maintain 

high consistency, with average accuracy close to 88% and substantial AUC-ROC values. Additionally, 

gradient boosting and stacking achieved optimal F1 scores across folds, reflecting a balance between 

precision and recall. The cross-validation analysis confirms that RF, bagging, and other ensemble-based 

models are better suited for this dataset, offering strong generalization to unseen data. 

 

Table 2.  Summary of Model Performance Metrics on Testing Data 

Model Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) ROC-AUC (%) 

LR 77 75 75 75 87 

RF 88 81 73 77 94 

SVM 80 79 79 79 88 

Boosting 79 82 80 81 87 

Bagging 87 83 74 78 90 

KNN 81 77 73 75 85 

Stacking 79 83 77 80 88 
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Table 3.  Cross-Validation Performance Metrics for Various ML Models 

Model Average 

Accuracy (%) 

Average 

F1 Score (%) 

Average 

ROC-AUC (%) 

LR 72 71 82 

RF 88 79 94 

SVM 79 76 88 

Boosting 81 80 87 

Bagging 86 78 90 

KNN 79 76 85 

Stacking 82 81 89 

  

3.6 Statistical Significance 

 

To assess whether the variations in model performance are statistically significant, pairwise 

comparisons are carried out using paired t-tests, with a threshold of 0.05 for significance. The findings 

indicate that the random forest and bagging models outperform logistic regression and KNN in terms 

of accuracy and AUC-ROC, with statistically significant differences (𝑝 <  0.05). The superior 

performance of random forest and bagging is confirmed through robust performance metrics and 

consistent results across cross-validation folds. This statistical analysis underscores the reliability of the 

ensemble methods in improving predictive accuracy and handling class imbalance compared to 

traditional models. 

 

3.7 Visualization of Model Performance 

 

To visually compare the performance of the models, bar plots, line plots, and ROC curves are plotted 

for each model based on the testing data. Figure 7 illustrates a bar plot contrasting the performance of 

different models across based on metrics such as accuracy, precision, recall, and F1 score. RF and 

bagging exhibit the highest performance across multiple metrics, indicating strong predictive power. 

SVM and gradient boosting demonstrate balanced performance, making them suitable for various 

applications. 
 

 

Figure 7. Performance Metrics Comparison of ML Models 
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Figure 8 shows a grouped bar chart for each metric to compare the test data and cross-validation results 

for each model. The visualizations highlight the comparative performance of the models, focusing on 

key metrics such as accuracy and F1 score. RF and bagging achieve the highest accuracy on both testing 

and cross-validation datasets. KNN and SVM perform moderately well, while LR shows the lowest 

accuracy, indicating it may not be as effective as the other models for this particular task. Gradient 

boosting and stacking exhibit the highest F1 scores, reflecting an optimal balance between precision 

and recall. The cross-validation scores closely match the testing data scores, suggesting that the models 

are not overfitting and can perform consistently on unseen data.  

 

Figure 8. Performance Metrics Comparison between Testing Data and Cross-Validation 

 

Figure 9 compares ROC curves, showing how different machine learning models distinguish between 

diabetic and non-diabetic cases. The x-axis represents the False Positive Rate (1 - Specificity), and the 

y-axis depicts the True Positive Rate (Sensitivity). Models positioned closer to the top-left corner 

indicate better performance, reflecting higher sensitivity and fewer false positives. Among the models, 

Random Forest emerges as the best performer, with its ROC curve reaching the highest point, indicating 

a greater true positive rate alongside a reduced false positive rate across all thresholds. SVM and 

gradient boosting also perform well, showing they are capable classifiers with similar effectiveness for 

this task. Logistic regression and bagging perform reasonably well but do not achieve the same level of 

performance as the ensemble methods of random forest and gradient boosting. 
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Figure 9. ROC Curves Comparison of Different ML Models 

 

3.8 Comparative Analysis with Other Research 

 

3.8.1 Comparative Analysis with Other Studies 

 

Ensemble methods, including bagging, boosting, and stacking, have consistently demonstrated strong 

predictive performance in diabetes prediction tasks across various studies. The results of this research 

align with these trends, as detailed below. 

 

Bagging: Bagging achieved an accuracy of 87% and an AUC of 90% (Table 2), consistent with findings 

by Raja et al. (2015), where bagging outperformed other ensemble techniques in diabetes prediction, 

demonstrating high accuracy and robustness. These results reinforce the reliability of bagging as an 

effective ensemble method. 

 

Boosting: Boosting showed an accuracy of 79% and an AUC of 87%, comparable to the results in Ganie 

et al. (2023), where boosting proved effective in handling complex datasets and achieved significant 

accuracy improvements over individual classifiers. While boosting showed slightly lower performance 

when compared to bagging and random forest in this study, yet it remains a reliable choice, offering 

balanced metrics across precision, sensitivity, and F1 score. 

 

Stacking: Stacking achieved an accuracy of 79% and an AUC of 88%, aligning with high-performance 

results reported by Li et al. (2024), where a stacking ensemble model reached an AUC of up to 98.90% 

when optimized with a genetic algorithm. Although the stacking model in this study did not achieve that 

level, it demonstrated strong predictive power, outperforming traditional models such as logistic 

regression and KNN, effectively capturing complex patterns. 

 

These comparisons confirm the effectiveness of bagging, boosting, and stacking in diabetes prediction. 

This study contributes additional evidence to the utility of ensemble methods, highlighting their strong 

generalization capabilities across different testing and cross-validation datasets. 
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3.8.2 Improvement Percentage Over Other Algorithms 

 

Table 4 presents the percentage improvement in key performance metrics for ensemble methods 

compared to baseline algorithms such as logistic regression and KNN. For instance, random Forest 

achieved approximately a 14% improvement in accuracy and a 12% increase in AUC-ROC over logistic 

regression. Bagging and boosting also demonstrated similar gains, surpassing traditional models by 10-

15% across various metrics. These results underscore that ensemble methods, by combining multiple 

learners and identifying complex patterns, significantly enhance accuracy and reliability for diabetes 

prediction. 

 

Table 4.  Summary of Percentage Improvement in Key Metrics for Ensemble Methods 

Model 
Improvement in 

Accuracy (%) 

Improvement in 

Precision (%) 

Improvement in 

F1 score (%) 

Improvement in 

ROC-AUC (%) 

RF +14 +8 +9 +12 

Bagging +13 +7 +8 +10 

Boosting +12 +8 +9 +9 

Stacking +10 +6 +7 +9 

 

These improvements indicate that ensemble methods, particularly random forest, bagging, and boosting, 

offer substantial benefits in predictive accuracy and model robustness. This highlights their 

effectiveness for applications requiring reliable and accurate diabetes prediction. 

 

3.9 Discussion 

 

Ensemble methods, particularly random forest and boosting, demonstrated strong performance in this 

study when applied to SMOTE-balanced data. The SMOTE technique initially addresses class 

imbalance by generating synthetic samples and creating a balanced dataset before modelling. Ensemble 

methods then leverage this balanced dataset to enhance the stability and accuracy of predictions by 

effectively managing complex patterns within the data distribution. This approach mitigates residual 

bias, reduces overfitting, and improves robustness, as observed in testing and cross-validation metrics. 

 

3.9.1 Implications for Clinical Integration 

 

The findings underscore the potential of incorporating machine learning models into clinical practice. 

The effectiveness of random forest and boosting methods highlights their suitability as decision-support 

tools for the early detection of diabetes. These models could be integrated into electronic health records 

(EHR) systems to efficiently analyze patient data and identify individual at elevated risk for Type 2 

Diabetes Mellitus (T2DM). Such integration would enable healthcare providers to implement preventive 

strategies or early interventions, potentially enhancing patient outcomes and reducing the economic 

burden associated with diabetes-related complications. 

Additionally, these models could facilitate continuous patient monitoring, offering real-time 

assessments and alerts for the onset of diabetes. This capability is particularly beneficial in remote or 

underserved areas where conventional diagnostic resources may be scarce. By harnessing the power of 

machine learning, healthcare systems can transition towards a more proactive approach, emphasizing 

prevention and early intervention over traditional reactive care. 
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3.9.2 Potential Biases and Limitations 

 

Despite promising results, several limitations must be acknowledged. This study relied solely on the 

Pima Indians Diabetes Database, which comprises data from female patients of Pima Indian descent. 

While this dataset is well-known and frequently used in diabetes research, it may not adequately 

represent the diversity present within the general population. The lack of diversity could introduce 

biases, affecting the generalizability of the findings to other demographic groups with varying genetic, 

environmental, or lifestyle characteristics. For instance, differences in diabetes risk factors, such as 

obesity and physical inactivity, across ethnicities could impact the models' performance. 

Additionally, the relatively small size of the dataset (768 records) may limit the models' capacity 

to capture complex patterns and relationships. A larger, more diverse dataset could offer a broader range 

of data points, enhancing the models' ability to generalize and improving their robustness when applied 

to different populations. Expanding the dataset to include more diverse and numerous samples would 

likely yield more comprehensive insights and enhance model performance across various contexts. 

 

3.9.3 Future Research Directions 

 

To improve generalizability, future research could explore alternative approaches for managing class 

imbalance beyond SMOTE, such as cost-sensitive learning, which may be more effective for datasets 

representing diverse population demographics. Additionally, combining ensemble techniques with deep 

learning approaches could enhance predictive performance, especially on larger, more heterogeneous 

datasets. Expanding the model’s application to varied populations would help assess the scalability and 

applicability of ensemble methods for diabetes risk prediction across diverse clinical settings. 

 

4. Conclusion 

 

This study highlights the effectiveness of ensemble learning techniques, particularly random forest and 

boosting, in predicting diabetes onset with high accuracy and robustness. By effectively managing class 

imbalance and capturing complex data relationships, these models provide valuable tools for early 

diabetes diagnosis and management. However, the study emphasizes the need for further research to 

overcome limitations in dataset diversity and improve model generalizability. Integrating these 

advanced machine learning models into clinical practice could transform diabetes care by enabling 

earlier and more precise interventions, improving patient outcomes, and reducing healthcare costs. 
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