ASSESSING KEY TECHNOLOGY FOR FACILITIES MANAGEMENT IN MALAYSIA

Zulazhan Abu Bakar¹ and Syahrul Nizam Kamaruzzaman^{2*}

^{1,2} Department of Building Surveying, Faculty of Built Environment, Universiti Malaya, Kuala Lumpur, Malaysia
² Centre for Building, Construction and Tropical Architecture (BuCTA), Faculty of Built Environment, Universiti Malaya, Kuala Lumpur, Malaysia

E-mail: * syahrulnizam@um.edu.my

ABSTRACT

The Facilities Management (FM) industry is seeing expansion and growth in Malaysia; nevertheless for the industry to elevate to a new level of success, it must overcome various technological barriers that have slowed its adoption of technology. The purpose of this research is to gain an understanding of the key technologies that the Malavsian market is prioritising and, consequently, to determine whether the industry is keeping pace with technological advancement. This study analysed the significance of ten (10) essential FM technologies and five (5) deployment FM areas with specific focus on real estate and commercial property sector in FM. The research employed purposive sampling to assemble an expert panel, and then used a questionnaire with a five-point Likert scale to conduct a Delphi study to evaluate the relative importance of each technology and implementation area. Each member of the expert panel was interviewed separately, and the survey was distributed to each of them. According to the findings, CMMS is identified as the technology with the most significant function as data and information management, and maintenance and operations management, whereas BAS is a significant technology for energy management. In conclusion, the research demonstrated that technology adoption in Malaysia is concentrated on legacy technology, hence emerging technology has not yet been considered due to factors such as untested use case, high risk on return on investment, the complexity of new technology and lack of organisational support. The implication of this study shows that adoption is still in its infancy stage; consequently, additional awareness, collaboration between academia and industry, investment in training, and prospects for industry efficiency and productivity are required. While the focus of the research is confined to real estate and commercial property, additional research can be conducted on other segments of the FM industry in Malaysia, including healthcare and education.

Keywords: Facilities Management, Technology Adoption, Facilities Management Digital Transformation, FM Malaysia, FM Technology

1. INTRODUCTION

FM is defined as "organizational function which integrates people, place and process within the built environment with the purpose of improving the quality of life of people and the productivity of the core business" and a "profession that encompasses multiple disciplines to ensure functionality, comfort, safety, and efficiency of the built environment by integrating people, place, process, and technology" (IFMA, 2017; ISO, 2015; IWFM, 2017). Facilities Management can be summarised as a function of guaranteeing a functional and efficient built environment to support the core business thus critical in ensuring a successful businesses and organizations. Despite its critical role, Shamser Ali & Tyagi (2020) mentioned that FM is a highly complex multidisciplinary industry with shrinking profit margin; hence technology can help to enhance business efficiency and productivity. To add, Atta & Talamo (2020) believed technology to have profound impact to the traditionally conceived FM processes that is currently driven by too many manual work. Despite the industry's positive growth in Malaysia, as reported by Kamaruzzaman et al. (2018), technology adoption topic has long been contentious in Malaysia. Prior to that, Ariff (2007) criticised that low adoption of technology will be one of the factors impacting the quality of services of FM in Malaysia and over the years keeping up with rapid changes of technology will be one of the challenges for FM in Malaysia as highlighted by Mohd Isa et al. (2016). There is no other option but to innovate as mentioned by Goyal & Pitt (2007), "innovate or get left behind". The industry has been long criticised for the lack of innovations. However, there are insufficient studies that indicate the actual adoption of FM technology in Malaysia. Understanding the key technologies is the starting point for a deeper comprehension of the level of adoption of FM in Malaysia. Hence, the aim of this research is to evaluate the key technologies deemed significant from a Malaysian market perspective.

2. LITERATURE REVIEW

2.1 Facilities Management in Malaysia

Kamaruzzaman & Ahmad Zawawi (2010) mentioned that FM is a good combination of management, business, and technological expertise that may be applicable to tactical, operational, and strategic decision-making processes and FM in Malaysia has evolved from outdated upkeeping and maintenance work into strategic roles since its inception. However, Zawawi et al. (2016) mentioned that compared to other parts of the world, FM in Malaysia is still nascent. Firdauz et al. (2015) highlighted that western countries and other developed Asian countries have begun a discussion to equip FM as a twenty-first century industry, however in Malaysia similar dialogue has yet to initiate. This has unwittingly impacted the quality of FM services and the image that FM in Malaysia seen as very traditional and lack of innovation. The lack of technology adoption for FM in Malaysia is quite apparent. Zawawi et al. (2016) mentioned that the workflows and processes for FM in Malaysia are still labour intensive. In contrast, Goyal & Pitt (2007) emphasized that process flow and workflow should be the fundamental for innovation for FM. In addition to that, Myeda & Pitt (2014) and Kamaruzzaman et al. (2018) emphasized technology competency as one of the required skills need to deliver a successful FM service. The shift from traditional work to a more strategic role is applauded, but for the industry to advance further, technological obstacles must be better understood starting with identifying the current technology adoption.

2.2 Technology Adoption in FM

Straub (2009) defined technology adoption as the behavioural change in which individual accept innovations to an extent it is integrated into appropriate context and Rogers (2003) mentioned its success depends on a lot of factors. Technology can provide powerful tools, competitive edge and improve FM services (Aziz et al., 2016) and FM should leverage on latest technology and reap its advantages (Teicholz, 2013). Ahmed et al. (2017) and Lavikka et al. (2017) added that the FM industry already recognised the potential positive effect of technologies although technology adoption will require a comprehensive framework to enable the shift of work and mindset. Rogers (2003) however was cautious about technology adoption, particularly over adoption, which occurs when a user adopts technologies that experts believe they should not. Consequently, successful technology adoption is also the result of identifying and selecting the appropriate technologies (Taherdoost, 2018).

2.3 Key Technology and Application Areas of FM

According to Goodhue & Thompson (1995), a high probability of successful technology adoption is a perfect match between the task and the technology. This research has therefore compiled five (5) operational areas and ten (10) technologies adopted from Teicholz, (2013) and Marocco & Garofolo (2021) for further analysis.

	Application Areas of FM	Detailed definitions
1	Information and Data Management	The location and monitoring of building components, the archiving of asset relevant data, and the sophisticated visualisation and interaction with facility data are all highlighted.
2	Maintenance and Operation	Work order management, maintenance decision-making processes, asset problem detection and inspection, and predictive maintenance are all tasks that are necessary for facilities to operate efficiently.

Table 1. Key	Application	Areas	in	FM
--------------	-------------	-------	----	----

3	Energy Management	Keeping track of and analyse how much energy is used by buildings both in real-time and over a chosen time frame.
4	Asset Management	Significant and ongoing investment in repair and renewal of deteriorating components to safeguard a portfolio of facility assets against the ravages of time and keep it fit for present use.
5	Emergency Management	Natural catastrophes, such as tornadoes and earthquakes, as well as human-caused situations including fires, chemical spills, and failed assets.

Table 1 summarised the key implementation areas as adopted from Marocco & Garofolo (2021) while the key technologies are identified as adopted from Teicholz (2013) as below;

- 1. BIM Building Information Modelling
- 2. GIS Geographic Information Modelling
- 3. CMMS Computerised Maintenance Management System
- 4. CAFM Computer Aided Facility Management
- 5. AR Augmented Reality
- 6. VR Virtual Reality
- 7. IoT Internet of Things
- 8. BEMS Building Energy Management System
- 9. BAS Building Automation System
- 10. BDA Big Data Analytics

Building Information Modelling (BIM) overcomes the issue in collecting, processing, and modelling 'asis' information of a building with more automated work (Wong et al., 2018). BIM is less laborious with scalable data retention and can also impact how space management, energy management and whole life cycle cost of assets for FM (Teicholz, 2013). Utilizing BIM in FM facilitates lifecycle data management and performance monitoring of FM activities, including building a preventive maintenance plan, commissioning, maintenance, and service, creating spaces, ensuring quality, handling emergencies, and deconstructing (Araszkiewicz, 2017; Chang et al., 2018; Gerrish et al., 2017; Motamedi et al., 2014; Wong et al., 2018).

Geographic Information System (GIS) supports many business processes and information systems for FM by understanding and visualising data to expose relationships and forms of maps, globes, reports, and charts (Wong et al., 2018). Facility managers could manage and analyse space across large areas, the spatial data can support various assessment and inspection tasks, the GPS-enabled tools can be used for asset inventories and building fire safety reviews, and they can also integrate with other technologies like BIM and CAFM (Sulaiman et al., 2021; Wong et al., 2018). Big Data Analytics (BDA) described as extracting value from large number of data (Gantz & Reinsel, 2011). Data gathered from various sources can assist FM to make valuable analysis, in maintenance pattern, costing, asset life cycle cost, energy management and in overall enhance FM processes (Ahmed et al., 2017; Araszkiewicz, 2017; Atta & Talamo, 2020; Konanahalli et al., 2018).

Systems such as Computer Aided Facilities Management (CAFM), Computerised Maintenance Management System (CMMS), Building Automation System (BAS), or Building Energy Management System (BEMS) have been around for a while and are utilised for FM purposes (Araszkiewicz, 2017). These technologies remove the needless, time-consuming, and redundant data collection effort and get rid of a task that doesn't offer value (Aziz et al., 2016). ISO defines Internet of Things (IoT) as "infrastructure of interconnected entities, people, systems, and information resources together with services which processes and reacts to information from the physical world and virtual world" (SO/IEC 20924:2018). IoT has become integral part of FM recently (Atta & Talamo, 2020).

Despite being completely unrelated concepts, BDA and IoT are strongly related function: in an FM setup, adding metres, sensors, systems, and devices that track the actual behaviour of assets, equipment, and components and connect with other systems is frequently necessary to implement IoT, which is essentially a technique to receive and deliver vast volumes of data (Konanahalli et al., 2018). Virtual Reality (VR) and Augmented Reality (AR) are technologies that used in combination with BIM. Digital modelling of building with AR and VR can be a powerful tool to interact with the facilities (Marocco & Garofolo, 2021). AR and VR can be implemented in simulating to fire escapes, to train safety maintenance routine or to emulate building changes (Konanahalli et al., 2018; Marocco & Garofolo, 2021; Sulaiman et al., 2021; Wong et al., 2018).

3. METHODOLOGY

3.1 Systematic Literature Review

Cooper (2017) mentioned that a systematic literature review is a rigorous and comprehensive method for identifying, evaluating, and synthesizing existing research on a specific topic or research question. An extensive review of journal was undertaken by adopting methodology by Wong et al., (2018), where an extensive scanning and review of existing literature was done according to ten (10) identified technology for FM and five (5) key implementation areas. For systematic reviews of certain themes of research, minimising subjectivity in selection of publications for research and analysis is a prime concern (Wong et al., 2018).

Hence the use of Scopus and Google scholar were utilized with keywords pertaining key areas 'information', 'data management', 'maintenance', 'operations', 'energy management', 'asset management' and 'energy management'. To add, additional keywords used, 'BIM', 'building information modelling', 'GIS', 'geographic information modelling', 'CMMS', 'computerised maintenance management system', 'CAFM', 'computer aided facility management', 'AR', 'augmented reality', 'VR', 'virtual reality', 'IoT', 'internet of things', 'BEMS', 'building energy management system', 'BAS', 'building automation system', 'BDA' and 'big data analytics'. Results of the findings were compiled in a crosswalk table as shown in Table 3.

Author	Year	BIM	GIS	CMMS	CAFM	AR	VR	ІоТ	BEMS	BAS	BDA
Cardellino & Finch [1]	2006				*			*			
Atkin et al. [2]	2006							*			
Elmualim et.al [3]	2009			*	*					*	
Bainbridge & Finch [4]	2009				*						
Motamedi et al. [5]	2011	*		*				*			
Lai & Yik [6]	2012			*							
Teicholz [7]	2013	*	*	*		*	*	*	*	*	
Motamedi et al. [8]	2014	*		*							
Hua et al. [9]	2014		*								
Korpela et al. [10]	2015	*		*							
Mohanta & Das [11]	2016	*			*						
Gheisari & Irizarry [12]	2016	*				*	*				
Domingues et al. [13]	2016									*	
Araszkiewicz [14]	2017	*		*	*			*	*	*	*
Ebbesen & Bonke [15]	2017		*	*	*						
Suprabhas & Dib [16]	2017	*						*			
Gerrish et al. [17]	2017	*				*	*				
Ahmed et al. [18]	2017							*			*
Atkin & Bildsten [19]	2017	*						*			*
Bentley [20]	2018										*
Konanahalli et al. [21]	2018			*				*			*
Chang et al. [22]	2018	*						*			
Wong et al. [23]	2018	*	*	*		*	*	*			
Carreira et al. [24]	2018	*	*	*	*	*	*				
Matarneh et al. [25]	2019	*								*	
Bröchner et al. [26]	2019	*									
Christiansen [27]	2020			*							
Aziz et al. [28]	2020	*									
Marinakis [29]	2020	*						*			
Atta & Talamo [30]	2020							*			*
Marocco & Garofolo [31]	2021	*						*			
J. Y. Lee et al. [32]	2021	*	*			*	*				
Total	32	19	6	12	7	6	6	14	2	5	6

Table 2. FM Key Technology

A compilation of publications was summarised in view of key technology being discussed by the scholars as per Table 2. A total of 32 publications were compiled with BIM were widely discussed by scholars from 2006 to 2021. The time based given was year 2006 until 2021 since FM technology is a new concept and technology obsolescence is about three to five years (Mellal, 2020) thus 15 years span is considerably logical. A further analysis of areas of implementation are discussed in the following.

	Tech	Data Management	Maintenance and Operation	Energy Management	Asset Management	Emergency Management
1	BIM	[5], [7], [8], [10], [12], [14], [16], [17], [19], [22], [23], [24], [25], [26], [28], [31], [32]	[7], [8], [10], [12], [16], [17], [22], [23], [24], [25], [26], [28], [31]	[7], [12], [16], [17], [22], [24], [25], [28], [29], [31]	[7], [8], [10], [14], [22], [23], [24], [25], [28]	[5], [7], [17], [31]
2	GIS	[7], [15], [23], [24], [32]	[9], [15], [23]	[7], [9], [23]	[23]	NA
3	CMMS	[5], [6], [7], [8], [10], [11], [14], [15], [23], [24]	[5], [6], [7], [8], [10], [11], [14], [15], [21], [23], [24]	[7], [24]	[8], [10], [11]	[27]
4	CAFM	[1], [3], [4], [7], [11], [14], [15], [24]	[1], [3], [4], [11], [14], [15], [24], [25]	[3], [4], [24]	[3], [4], [11]	[4]
5	AR	[12], [17], [23], [24], [32]	[7], [12], [17]	NA	[24]	[17]
6	VR	[12], [17], [23], [24], [32]	[7], [12], [17]	NA	[24]	[17]
7	IoT	[2], [16], [19], [21], [22], [30], [31]	[2], [14], [16], [18], [21], [22], [23], [30], [31]	[2], [14], [16], [18], [21], [22], [23], [29], [31]	[1], [2], [7], [14], [22], [23]	[5], [14], [23], [31]
8	BEMS	[14]	NA	[14]	NA	NA
9	BAS	[3], [13], [14]	[3], [13]	[3], [13], [14], [25]	[3]	[7]
10	BDA	[18], [19], [20], [21], [30]	[14], [18], [20], [21], [30]	[14], [18], [20], [21]	[21]	[21]

Table 3	Crosswalk	of Techno	loov and	Implem	entation	Area
	CIUSSWalk		nogy anu	mpiem		Alta

*NA – Not Available

Table 3 summarises the findings with the use of a crosswalk table of FM implementation areas and technologies. In addition to other technologies that have been the focus of this research, BIM and Data and Information Management were extensively discussed by scholars. The crosswalk analysis adopted from Teicholz (2013) has enabled this study to filter the pertinent technology and implementation areas. Eight (8) technologies and implementation areas that were not included in Table 3 were also omitted from the expert panel's discussion, namely BEMS for Maintenance and Operation Management, GIS for Emergency Management, CMMS for Energy Management, AR for Energy Management, VR for Energy Management, BEMS for Asset Management, BEMS for Emergency Management, and BAS for Emergency Management. This information served as the foundation for the expert panel's Delphi session.

3.2 Expert Panels

The research is quantitative in nature with a positivism perspective, which believes that only knowledge based on observed facts can be true (Easterby-Smith et al., 2008). Linstone et al. (2002) mentioned that the Delphi approach selected for this research is a method that can foster consensus in novel domains and to be conducted using various tools including survey and interview which was adopted for this research. The choice of expert panel and their level of competency can determine the outcome of a Delphi survey as mentioned by A. P. C. Chan et al. (2001). Hence a purposive sampling is being adopted for selection of expert panels. Skulmoski et al. (2007) mentioned that two important criteria for expert panels are knowledge and experience, and willingness to participate. The experts must be a Certified Facilities Manager Level 5 by Malaysia's Construction Industry Development Board (CIDB) and should have more than 10 years' experience in facilities management with addition experience in technology adoption in real estate and commercial property. The scope of industry selected is real estate and property as it covers around 30% of the FM industry (Moore et al., 2004). This segment of FM is highly represented, so the effects of the study will be

evident. It was also noted that each sector or segment of the FM industry may prioritise technology differently.

There are no specific rules on number of expert panels for Delphi analysis, however as mentioned by Skulmoski et al. (2007) since the group is homogenous in nature, 10 to 15 panels shall be sufficient, hence 15 expert panel were invited for the interview session and 10 accepted. The expert panels were interviewed individually or in person and provided with a questionnaire survey containing the technologies and implementation areas from Table 3, and they ranked them on a Likert scale ranging from 1 - Less Significant to 5 - Most Significant. All the data collected were served as the basis for the research that will identify essential FM technologies and implementation areas.

3.3 Statistical tools for data analysis

The data gathered from the expert panel was analysed using statistical methods, and comparisons between the expert groups were made. The first statistical techniques are the mean score (M) and standard deviation (SD); the second is the Cronbach's alpha reliability test; the third is the Kendall's coefficient for concordance; and the fourth is the test for inter-rater agreement (IRA). The mean score, SD, and Relative Importance Index (RII) were used to rank the 10 technologies. When two or more factors have the same mean value, the ranking considers both the mean and the standard deviation of the factors and consequently, factors with lower SD will be given a higher position (Tsai et al., 2014).

3.4 Kendall's Coefficient of Concordance and IRA

The Kendall's coefficient of concordance, which ranges from 0 (perfect disagreement) to 1 (perfect agreement), was used to assess the degree and reliability of consensus among survey participants (D. W. M. Chan & Chan, 2012). The ordinal level of measurement with more than 2 raters should apply Kendall's coefficient (Gisev et al., 2013). Suppose that object i is given the rank $r_{i,j}$ by rater number j, where there are in total n objects and m raters. Then the total rank given to object i is;

$$R_i = \sum_{j=1}^m r_{i,j}$$

And the mean value of these total ranks is,

$$\bar{R} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

The sum of squared deviations, S is defined as,

$$S = \sum_{i=1}^{n} (R_i - \bar{R})^2$$

And then Kendall's W is defined as,

$$W = \frac{12S}{m^2(n^3 - n)}$$

3.5 Significance of the factors

The level of agreement between the two rounds of the Delphi survey was investigated in this study, and the results were validated, using the IRA statistics and significance level grading. The 42 criteria that were identified during the second round of the Delphi survey were utilised as the basis for the data used and evaluated in this section. More so, the study applied the scale interval grading method used by to determine the significance of each factor (Li et al., 2013) as follows:

"Not important" (M < 1.5), "Slightly important" (1.51 \leq M \leq 2.5), "Moderately important" $(2.51 \le M \le 3.5)$, "Important" $(3.51 \le M \le 4.5)$ and "Very important" $(M \ge 4.51)$

RII is also used to analyse the relative importance of each factor. RII is calculated using below equations.

$$RII = \frac{\sum r}{(k)(m)}$$

Where r is the total ratings given by expert panels, while k is the number of factors and m is the number of respondents. The IRA is being analyse for each element with equations;

IRA
$$(P_{i}) = \frac{1}{m(m-1)} \left(\sum_{j=1}^{k} (r_{i,j})^2 - m \right)$$

The interpretation for the IRA statistics (Lebreton & Senter, 2008) are:

0.00–0.30 "lack of agreement," 0.31–0.50 "weak agreement," 0.51–0.70 "moderate agreement," 0.71–0.90 "strong agreement" and 0.91–1.00 "very strong agreement."

Where r is the total ratings given by expert panels, while k is the number of factors and m is the number of respondents.

4. RESULTS AND DISCUSSION

4.1 Data Analysis

From Table 4, ten (10) experts were selected and 60% of them are facility manager. 70% of the experts hold master's degree. The experts have minimum 10 years' experience with 30% having more than 20 years. All the experts are certified Level 5 CIDB FM. The experts also have at least 6 years' experience in FM technology and involved in real estate and commercial property. A combination of experienced and skilled experts is a priority for this study. The study focused on real estate and commercial property to form a homogenous opinion.

Demographics Background	Frequency	Percentage (%)
Role		
Facility Manager	6	60
FM Consultant	2	20
Technical Manager	2	20
Education Level		
Bachelor's degree	7	70
Master's degree	3	30
Certification		
Certified CIDB FM Level 5	10	100
FM Experience		
10-15 years	5	50
16 - 20	2	20
More than 20 years	3	30
Industry		
Real Estate & Commercial	10	100
Years of experience in FM technology		
6 – 10 years	7	70
11 – 15 years	1	10
More than 15 years	2	20

Table 4. Demographic of Expert Panel

https://ejournal.um.edu.my/index.php/JSCP/index

The two-round Delphi surveys shows consensus among the expert panels, and there are no significant changes from both round of questionnaires. The α -value for the first round and second round of Delphi survey was 0.938, which is greater than the 0.7 and data is considered reliable. Furthermore, a Shapiro-Wilk test of normality for both rounds of the Delphi surveys reveals that non-parametric tests are necessary for the analysis of the gathered data due to the data's non-normal distribution (p<0.05).

Additionally, thirteen (13) factors are considered very important by the expert panels. The top 5 very important factors are, A3 - CMMS for Data Management, B3 - CMMS for Maintenance and Operations, C7 - BAS for Energy Management, C8 - BEMS for Energy Management, D3 - CMMS for Asset Management, C6 - IoT for Energy Management, B3 - CMMS for Maintenance and Operations, and A9 - BAS for Data Management. A3 - CMMS for Data Management, B3 - CMMS for Data Management has Mean Value of 5.000 and RII=1.000, which means the expert panels agreed on its significant importance. While B6 – VR for Maintenance and Operations least important with RII = 0.500 and M=2.500. The variance for mean score between the highest-ranking factor (M = 5.000) and the least important (M = 2.500) is 2.500. It is worthy to note that 32 factors from overall 44 factors are graded RII >0.7 and M>3.5, thus considered significant.

Among the factors ranked highest by expert panels, CMMS and BAS tied at 23% as the most important technology. CMMS is considered very important for Data Management, Operations and Maintenance and Asset Management. While BAS considered very important for Energy Management, Maintenance and Operations and Data Management. An emerging technology, BDA also seen very important for FM is areas such as Asset Management and Data Management.

	Code	Tech	RII	Mean	SD	Rank	<i>P_i</i> score	IRA	Significance Grade
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A- Info	ormation an	d Data Ma	nagement					
A3 CMMS 1.000 5.00 0.000 1 1.000 very strong agreement Very important A4 CAFM 0.860 4.30 0.823 14 0.311 weak agreement Important A5 AR 0.560 2.80 0.919 31 0.311 weak agreement Moderately important A6 VR 0.540 2.70 0.823 33 0.311 weak agreement Moderately important A6 VR 0.540 2.70 0.823 33 0.311 weak agreement Moderately important A7 IoT 0.880 4.40 0.516 11 0.467 weak agreement Very important A9 BAS 0.900 4.50 0.850 10 0.489 weak agreement Very important B1 BIM 0.800 4.00 1.054 21 0.222 lack of agreement Moderately important B4 CAFM 0.840 4.20 1.135 18 <td>A1</td> <td>BIM</td> <td>0.760</td> <td>3.80</td> <td>1.033</td> <td>23</td> <td>0.200</td> <td>lack of agreement</td> <td>Important</td>	A1	BIM	0.760	3.80	1.033	23	0.200	lack of agreement	Important
A4 CAFM 0.860 4.30 0.823 14 0.311 weak agreement Important A5 AR 0.560 2.80 0.919 31 0.311 weak agreement Moderately important A6 VR 0.540 2.70 0.823 33 0.311 weak agreement Moderately important A7 IoT 0.880 4.40 0.516 11 0.467 weak agreement Moderately important A9 BAS 0.900 4.50 0.527 8 0.444 weak agreement Very important A10 BDA 0.900 4.50 0.850 10 0.489 weak agreement Very important B2 GIS 0.680 3.40 0.966 28 0.222 lack of agreement Important B3 CMMS 1.000 5.00 0.000 1 1.000 very important B4 CAFM 0.840 4.20 1.135 18 0.356 weak agreem	A2	GIS	0.660	3.30	0.949	29	0.222	lack of agreement	Moderately important
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A3	CMMS	1.000	5.00	0.000	1	1.000	very strong agreement	Very important
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A4	CAFM	0.860	4.30	0.823	14	0.311	weak agreement	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A5	AR	0.560	2.80	0.919	31	0.311	weak agreement	Moderately important
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A6	VR	0.540	2.70	0.823	33	0.311	weak agreement	Moderately important
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A7	IoT	0.880	4.40	0.516	11	0.467	weak agreement	Important
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A8	BEMS	0.900	4.50	0.527	8	0.444	weak agreement	Very important
B- Maintenance and Operation Important B1 BIM 0.800 4.00 1.054 21 0.222 lack of agreement Important B2 GIS 0.680 3.40 0.966 28 0.222 lack of agreement Moderately important B3 CMMS 1.000 5.00 0.000 1 1.000 very strong agreement Very important B4 CAFM 0.840 4.20 1.135 18 0.356 weak agreement Moderately important B5 AR 0.540 2.70 0.949 32 0.222 lack of agreement Moderately important B6 VR 0.500 2.50 0.707 36 0.400 weak agreement Moderately important B7 IoT 0.860 4.30 0.675 4 0.622 moderate agreement Important B8 BAS 0.940 4.70 1.70 26 0.222 lack of agreement Important C2 GI	A9	BAS		4.70	0.483	5	0.533	moderate agreement	Very important
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A10	BDA	0.900	4.50	0.850	10	0.489	weak agreement	Very important
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B- Ma	intenance a	nd Operati	on					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B1	BIM	0.800	4.00	1.054	21	0.222	lack of agreement	Important
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	GIS	0.680	3.40	0.966	28	0.222	lack of agreement	Moderately important
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B3	CMMS	1.000	5.00	0.000	1	1.000	very strong agreement	Very important
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B4	CAFM	0.840	4.20	1.135	18	0.356	weak agreement	Important
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B5	AR	0.540	2.70	0.949	32	0.222	lack of agreement	Moderately important
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B6		0.500	2.50	0.707	36	0.400		
B9 BDA 0.820 4.10 1.287 19 0.356 weak agreement Important C- Energy Management C1 BIM 0.740 3.70 1.160 25 0.356 weak agreement Important C2 GIS 0.700 3.50 1.179 26 0.222 lack of agreement Important C3 CAFM 0.840 4.20 1.033 17 0.289 lack of agreement Important C4 AR 0.560 2.80 1.033 30 0.289 lack of agreement Moderately important C5 VR 0.540 2.70 0.949 35 0.356 weak agreement Moderately important C6 IoT 0.960 4.80 0.422 3 0.644 moderate agreement Very important C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important C9 BDA 0.840 4.20 1.135	B7	IoT	0.860	4.30	0.675	13	0.356	weak agreement	Important
C- Energy Management Important C1 BIM 0.740 3.70 1.160 25 0.356 weak agreement Important C2 GIS 0.700 3.50 1.179 26 0.222 lack of agreement Important C3 CAFM 0.840 4.20 1.033 17 0.289 lack of agreement Important C4 AR 0.560 2.80 1.033 30 0.289 lack of agreement Moderately important C5 VR 0.540 2.70 0.949 35 0.356 weak agreement Moderately important C6 IoT 0.960 4.80 0.422 3 0.644 moderate agreement Very important C7 BAS 1.000 5.00 0.000 1 1.000 very strong agreement Very important C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important D- Asset Management Import	B8	BAS	0.940	4.70	0.675	4	0.622	moderate agreement	Very important
C1 BIM 0.740 3.70 1.160 25 0.356 weak agreement Important C2 GIS 0.700 3.50 1.179 26 0.222 lack of agreement Important C3 CAFM 0.840 4.20 1.033 17 0.289 lack of agreement Important C4 AR 0.560 2.80 1.033 30 0.289 lack of agreement Moderately important C5 VR 0.540 2.70 0.949 35 0.356 weak agreement Moderately important C6 IoT 0.960 4.80 0.422 3 0.644 moderate agreement Very important C7 BAS 1.000 5.00 0.000 1 1.000 very strong agreement Very important C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important D- Asset Management Important Important Important Important	B9	BDA	0.820	4.10	1.287	19	0.356	weak agreement	Important
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C- Ene	ergy Manag	ement						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C1	BIM	0.740	3.70	1.160	25	0.356	weak agreement	Important
C4 AR 0.560 2.80 1.033 30 0.289 lack of agreement Moderately important C5 VR 0.540 2.70 0.949 35 0.356 weak agreement Moderately important C6 IoT 0.960 4.80 0.422 3 0.644 moderate agreement Very important C7 BAS 1.000 5.00 0.000 1 1.000 very strong agreement Very important C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important C9 BDA 0.840 4.20 1.135 16 0.356 weak agreement Important D- Asset Management Important Important Important Important Important D2 GIS 0.740 3.70 1.059 24 0.267 lack of agreement Important D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement </td <td>C2</td> <td>GIS</td> <td>0.700</td> <td>3.50</td> <td>1.179</td> <td>26</td> <td>0.222</td> <td>lack of agreement</td> <td>Important</td>	C2	GIS	0.700	3.50	1.179	26	0.222	lack of agreement	Important
C5 VR 0.540 2.70 0.949 35 0.356 weak agreement Moderately important C6 IoT 0.960 4.80 0.422 3 0.644 moderate agreement Very important C7 BAS 1.000 5.00 0.000 1 1.000 very strong agreement Very important C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important C9 BDA 0.840 4.20 1.135 16 0.356 weak agreement Important D- Asset Management J J 0.780 3.90 1.197 22 0.222 lack of agreement Important D2 GIS 0.740 3.70 1.059 24 0.267 lack of agreement Important D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement Very important	C3	CAFM	0.840	4.20	1.033	17	0.289		Important
C6 IoT 0.960 4.80 0.422 3 0.644 moderate agreement Very important C7 BAS 1.000 5.00 0.000 1 1.000 very strong agreement Very important C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important C9 BDA 0.840 4.20 1.135 16 0.356 weak agreement Important D- Asset Management D1 BIM 0.780 3.90 1.197 22 0.222 lack of agreement Important D2 GIS 0.740 3.70 1.059 24 0.267 lack of agreement Important D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement Very important	C4	AR	0.560	2.80	1.033	30	0.289	lack of agreement	Moderately important
C7 BAS 1.000 5.00 0.000 1 1.000 very strong agreement Very important C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important C9 BDA 0.840 4.20 1.135 16 0.356 weak agreement Important D- Asset Management D1 BIM 0.780 3.90 1.197 22 0.222 lack of agreement Important D2 GIS 0.740 3.70 1.059 24 0.267 lack of agreement Important D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement Very important	C5	VR	0.540	2.70	0.949	35	0.356	weak agreement	Moderately important
C8 BEMS 0.980 4.90 0.316 2 0.800 strong agreement Very important C9 BDA 0.840 4.20 1.135 16 0.356 weak agreement Important D- Asset Management D1 BIM 0.780 3.90 1.197 22 0.222 lack of agreement Important D2 GIS 0.740 3.70 1.059 24 0.267 lack of agreement Important D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement Very important	C6	IoT	0.960	4.80	0.422	3	0.644	moderate agreement	Very important
C9 BDA 0.840 4.20 1.135 16 0.356 weak agreement Important D- Asset Management	C7	BAS	1.000	5.00	0.000	1	1.000	very strong agreement	
D- Asset Management Important Important D1 BIM 0.780 3.90 1.197 22 0.222 lack of agreement Important D2 GIS 0.740 3.70 1.059 24 0.267 lack of agreement Important D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement Very important		BEMS	0.980	4.90	0.316	2	0.800	strong agreement	Very important
D1 BIM 0.780 3.90 1.197 22 0.222 lack of agreement Important D2 GIS 0.740 3.70 1.059 24 0.267 lack of agreement Important D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement Very important	<u>C9</u>	BDA	0.840	4.20	1.135	16	0.356	weak agreement	Important
D2GIS0.7403.701.059240.267lack of agreementImportantD3CMMS0.9804.900.31620.800strong agreementVery important	D- Ass	set Manager	nent						
D3 CMMS 0.980 4.90 0.316 2 0.800 strong agreement Very important	D1	BIM	0.780	3.90	1.197	22	0.222	lack of agreement	Important
	D2	GIS	0.740	3.70	1.059	24	0.267	lack of agreement	Important
D4 CAFM 0.860 4.30 0.823 12 0.311 weak agreement Important	D3	CMMS	0.980	4.90	0.316	2	0.800	strong agreement	Very important
	D4	CAFM	0.860	4.30	0.823	12	0.311	weak agreement	Important

Table 5. Round 1 Delphi

Journal of Surveying, Construction and Property (JSCP) ISSN: 1985-7527

D5	AR	0.640	3.20	1.033	30	0.200	lack of agreement	Moderately important			
D6	VR	0.540	2.70	0.675	34	0.356	weak agreement	Moderately important			
D7	IoT	0.800	4.00	0.943	20	0.289	lack of agreement	Important			
D8	BAS	0.800	4.00	1.054	21	0.222	lack of agreement	Important			
D9	BDA	0.900	4.50	0.972	7	0.489	weak agreement	Very important			
E- Em	E- Emergency Management										
E1	BIM	0.900	4.50	0.707	6	0.400	weak agreement	Very important			
E2	CMMS	0.840	4.20	0.919	15	0.356	weak agreement	Important			
E3	CAFM	0.800	4.00	1.054	21	0.222	lack of agreement	Important			
E4	AR	0.680	3.40	1.075	27	0.289	lack of agreement	Moderately important			
E5	VR	0.640	3.20	1.033	30	0.200	lack of agreement	Moderately important			
E6	IoT	0.900	4.50	0.707	9	0.400	weak agreement	Very important			
E7	BDA	0.740	3.70	1.059	24	0.222	lack of agreement	Important			
	ach's Alpha	· ·	0.938								
Numb	er of Respo	ndents	10								
(n)											
Kenda	ll's Coeffic	ient	0.518								
Conco	Concordance (W)										
Chi –	$Chi - Square(X^2)$		222.587								
Degree	Degree of Freedom (df)		43								
0	Significance Level (p)		0.000								
0		U.									

	Table 6. Round 2 Delphi									
Code	Tech	RII	Mean	SD	Rank	P_i score	IRA	Significance Grade		
A- Information and Data Management										
A1	BIM	0.760	3.80	1.033	23	0.200	lack of agreement	Important		
A2	GIS	0.660	3.30	0.949	29	0.222	lack of agreement	Moderately important		
A3	CMMS	1.000	5.00	0.000	1	1.000	very strong agreement	Very important		
A4	CAFM	0.860	4.30	0.823	14	0.311	weak agreement	Important		
A5	AR	0.560	2.80	0.919	31	0.311	weak agreement	Moderately important		
A6	VR	0.540	2.70	0.823	33	0.311	weak agreement	Moderately important		
A7	IoT	0.880	4.40	0.516	11	0.467	weak agreement	Important		
A8	BEMS	0.900	4.50	0.527	8	0.444	weak agreement	Very important		
A9	BAS	0.940	4.70	0.483	5	0.533	moderate agreement	Very important		
A10	BDA	0.900	4.50	0.850	10	0.489	weak agreement	Very important		
B- Mai	ntenance a	nd Operat	tion							
B1	BIM	0.800	4.00	1.054	21	0.222	lack of agreement	Important		
B2	GIS	0.680	3.40	0.966	28	0.222	lack of agreement	Moderately important		
B3	CMMS	1.000	5.00	0.000	1	1.000	very strong agreement	Very important		
B4	CAFM	0.840	4.20	1.135	18	0.356	weak agreement	Important		
B5	AR	0.540	2.70	0.949	32	0.222	lack of agreement	Moderately important		
B6	VR	0.500	2.50	0.707	36	0.400	weak agreement	Moderately important		
B7	IoT	0.860	4.30	0.675	13	0.356	weak agreement	Important		
B8	BAS	0.940	4.70	0.675	4	0.622	moderate agreement	Very important		
B9	BDA	0.820	4.10	1.287	19	0.356	weak agreement	Important		
C- Ene	rgy Manag	ement								
C1	BIM	0.740	3.70	1.160	25	0.356	weak agreement	Important		
C2	GIS	0.700	3.50	1.179	26	0.222	lack of agreement	Important		
C3	CAFM	0.840	4.20	1.033	17	0.289	lack of agreement	Important		
C4	AR	0.560	2.80	1.033	30	0.289	lack of agreement	Moderately important		
C5	VR	0.540	2.70	0.949	35	0.356	weak agreement	Moderately important		
C6	IoT	0.960	4.80	0.422	3	0.644	moderate agreement	Very important		
C7	BAS	1.000	5.00	0.000	1	1.000	very strong agreement	Very important		
C8	BEMS	0.980	4.90	0.316	2	0.800	strong agreement	Very important		
C9	BDA	0.840	4.20	1.135	16	0.356	weak agreement	Important		
D-Ass	et Manager	ment								
D1	BIM	0.780	3.90	1.197	22	0.222	lack of agreement	Important		
D2	GIS	0.740	3.70	1.059	24	0.267	lack of agreement	Important		
D3	CMMS	0.980	4.90	0.316	2	0.800	strong agreement	Very important		
D4	CAFM	0.860	4.30	0.823	12	0.311	weak agreement	Important		

Table 6. Round 2 Delphi

Journal of Surveying, Construction and Property (JSCP) ISSN: 1985-7527

D5	AR	0.640	3.20	1.033	30	0.200	lack of agreement	Moderately important
D6	VR	0.540	2.70	0.675	34	0.356	weak agreement	Moderately important
D7	IoT	0.800	4.00	0.943	20	0.289	lack of agreement	Important
D8	BAS	0.800	4.00	1.054	21	0.222	lack of agreement	Important
D9	BDA	0.900	4.50	0.972	7	0.489	weak agreement	Very important
E- Em	ergency Ma	anagemen	ıt				~	* *
E1	BIM	0.900	4.50	0.707	6	0.400	weak agreement	Very important
E2	CMMS	0.840	4.20	0.919	15	0.356	weak agreement	Important
E3	CAFM	0.800	4.00	1.054	21	0.222	lack of agreement	Important
E4	AR	0.680	3.40	1.075	27	0.289	lack of agreement	Moderately important
E5	VR	0.640	3.20	1.033	30	0.200	lack of agreement	Moderately important
E6	IoT	0.900	4.50	0.707	9	0.400	weak agreement	Very important
E7	BDA	0.740	3.70	1.059	24	0.222	lack of agreement	Important
	ach's Alpha	· ·	0.938					
Numbe	er of Respo	ndents	10					
(n)								
Kenda	ll's Coeffic	ient	0.518					
Conco	rdance (W))						
Chi-S	Square (X ²))	222.587					
	e of Freedo		43					
Significance Level (p)		0.000						
Signiff		- (P)	0.000					

Based on the Kendall's Coefficient for Concordance, analysis shows W= 0.518, this illustrates that the expert panels moderately agreed on overall factors. The significance level (p) = 0.000 means a strong consensus achieved among the expert panel. The expert panels are very strong in agreement that A3, B3 and C7 are playing very important part for FM. The expert panels are extremely in agreement for these 3 factors with IRA = 1.000. The other factors that have strong agreement among expert panels are C8 and D3. While C6, B8 and A9 although considered very important, received moderate agreement among the expert panel. Moreover, the rest of the factors that are categorised as very important received weak agreement among the expert panels, and they consist of E1, D9, A8, E6, and A10.

Table 7. Summary of Result

Code	Technology	FM Areas	Rank	Significance	IRA
A3	CMMS	Information and Data Management	1	Very important	very strong agreement
B3	CMMS	Maintenance and Operation	1	Very important	very strong agreement
C7	BAS	Energy Management	1	Very important	very strong agreement
C8	BEMS	Energy Management	2	Very important	strong agreement
D3	CMMS	Asset Management	2	Very important	strong agreement
C6	IoT	Energy Management	3	Very important	moderate agreement
B8	BAS	Maintenance and Operation	4	Very important	moderate agreement
A9	BAS	Information and Data Management	5	Very important	moderate agreement
E1	BIM	Emergency Management	6	Very important	weak agreement
D9	BDA	Asset Management	7	Very important	weak agreement
A8	BEMS	Information and Data Management	8	Very important	weak agreement
E6	IoT	Emergency Management	9	Very important	weak agreement
A10	BDA	Information and Data Management	10	Very important	weak agreement
A7	IoT	Information and Data Management	11	Important	weak agreement
D4	CAFM	Asset Management	12	Important	weak agreement
B7	IoT	Maintenance and Operation	13	Important	weak agreement
A4	CAFM	Information and Data Management	14	Important	weak agreement
E2	CMMS	Emergency Management	15	Important	weak agreement
С9	BDA	Energy Management	16	Important	weak agreement
C3	CAFM	Energy Management	17	Important	lack of agreement
B4	CAFM	Maintenance and Operation	18	Important	weak agreement
B9	BDA	Maintenance and Operation	19	Important	weak agreement
D7	IoT	Asset Management	20	Important	lack of agreement
B1	BIM	Maintenance and Operation	21	Important	lack of agreement
D8	BAS	Asset Management	21	Important	lack of agreement
E3	CAFM	Emergency Management	21	Important	lack of agreement

D1BIMAsset Management22ImportantA1BIMInformation and Data Management23ImportantD2GISAsset Management24ImportantE7BDAEmergency Management24Important	lack of agreement lack of agreement lack of agreement lack of agreement
D2 GIS Asset Management 24 Important	lack of agreement
8 I	
E7 BDA Emergency Management 24 Important	lack of agreement
C1 BIM Energy Management 25 Important	weak agreement
C2 GIS Energy Management 26 Important	lack of agreement
E4 AR Emergency Management 27 Moderately importat	at lack of agreement
B2 GIS Maintenance and Operation 28 Moderately importation	at lack of agreement
A2 GIS Information and Data Management 29 Moderately importation	at lack of agreement
C4 AR Energy Management 30 Moderately importa	at lack of agreement
D5 AR Asset Management 30 Moderately importation	at lack of agreement
E5 VR Emergency Management 30 Moderately importa	at lack of agreement
A5 AR Information and Data Management 31 Moderately importa	t weak agreement
B5 AR Maintenance and Operation 32 Moderately importation	
A6 VR Information and Data Management 33 Moderately importa	t weak agreement
D6 VR Asset Management 34 Moderately importa	
C5 VR Energy Management 35 Moderately importat	t weak agreement
B6 VR Maintenance and Operation 36 Moderately importa	

4.2 Discussion

Table 7 provided a comprehensive summary of the research's findings. The study utilised existing literature and performed a cross-analysis of forty four (44) factors between ten (10) technologies and five (5) implementation areas in FM. The expert panel subsequently in consensus, confirmed two (2) highly significant technologies, CMMS and BAS for FM in real estate and commercial property. CMMS is considered critical for Information and Data Management and Maintenance & Operation, while BAS is considered critical for Energy Management. The selection of two well-known legacy technologies demonstrates a fundamental understanding of workflow and process automation in FM, which is consistent with the scholar's suggestion as mentioned by Goyal & Pitt (2007). This shall also include the role of CMMS for maintenance and operation, which predominantly automates these processes. In addition, it is notable to observe the increasing significance of data and information management, which reflects the industry's shift towards data-driven operations. Since FM produced huge data from operations and processes, it is only logical to harness on the massive data to improve decision making, analysing life cycle of assets or even predicting the maintenance work (Ahmed et al., 2017). Similarly, BAS is considered significant because energy management is driven by data collection and analysis.

The research also revealed that well-known emerging technologies such as BIM and IoT did not rank among the most significant technology. The experts opined that the emerging technologies are still in conceptual stages or research mode, and it will take significant time to be useful for FM since it does not have successful use case yet in Malaysia. Hence continuous awareness and educating the practitioners is significant to expose facility managers with successful emerging technology use case and understanding of its usefulness. Collaboration between the industry and academic institutions is likely the best way to overcome this obstacle. Despite this, Atkin & Bildsten (2017) criticised the dearth of current research in the field of technology for FM on the grounds that researchers were discussing lagging indicators for technology or speculative technology without representing the actual situation. As demonstrated by this research, BIM has lately dominated FM discussions; however, the research indicated that BIM's disruptive innovation nature has yet to have an effect on practitioners.

In addition to that, the experts appear concerned on the risk associated with adopting new technology. It was stated that for organizations only take a bottom-line approach, thus prioritizing return on investment (ROI) is necessary to obtain support from the top management for new technology investment. Therefore, without a concrete plan or extensive knowledge and support from top management, it is unlikely that organization would take any technological risks. The lack of fail-safe framework for any new technology has prevented facility managers from taking risks with new technology. To add, facility managers also worry about the complexity of new technology and that in contrast will significantly increase their team workload while testing the individual limits to new technology. This is consistent with Taherdoost's (2018) views on Diffusion of Innovation (DOI) by Rogers (2003) and Technology Acceptance Model (TAM) by Davis (1985), which emphasised sociological and psychological approaches for users to accept new innovations. The discussion elaborated on three fundamental cognitive behaviours: attitude, social norm, and intention, all of which should be voluntary, and usage voluntariness would be a key criterion for the acceptance and adoption of new technologies.

5. CONCLUSION

This study began by examining the most important FM technology in Malaysia and whether the industry is keeping up with technological advancements in order to address the most pressing issue regarding the adoption of technology in FM. Prior to the research, there was small number of discussion and citations on the subject; however, the results demonstrated that the theories presented by scholars over the years are now supported by evidence. Clearly, the FM industry in Malaysia is still in its infancy and has fallen behind the technological curve. The reasons for the industry's predilection for older technology and utter disregard for emerging innovations have been clearly explained. Despite the lower profit margins and technological advancements, the FM sector remains sceptical to invest in new technology that could significantly benefit their organisations and the entire industry due to factors such as lack of awareness, lack of support from organizations and the risk of low acceptance for technology and therefore become the reason of adoption failure. The study's findings could very well serve as the basis for a framework research for the adoption of FM technology in Malaysia.

In order to provide a comprehensive assessment of the current state of technology adoption in Malaysia, future study could also involve facility managers and analyse the level of technology adoption for two (2) key technologies among them, as determined by experts. In addition to that, for future research a similar study could be deliver, but with a different segment of FM in Malaysia, such as healthcare and education, and integrate the perspectives from all segments, thereby presenting a holistic view of technology adoption FM in Malaysia. The detailed assessment of technology adoption in Malaysia's FM industry can provide researchers, industry practitioners, and other relevant stakeholders with important insights. This study shows the sector's massive hurdles and emphasises the necessity for greater research in this area. A thorough strategy to evaluate technology adoption could reveal valuable insights that might facilitate future research and industry decisions.

6. REFERENCES

- Ahmed, V., Tezel, A., Aziz, Z., & Sibley, M. (2017). The future of Big Data in facilities management: opportunities and challenges. *Facilities*, 35(13–14), 725–745. https://doi.org/10.1108/F-06-2016-0064
- Araszkiewicz, K. (2017). Digital Technologies in Facility Management The state of Practice and Research Challenges. *Procedia Engineering*, 196(June), 1034–1042. https://doi.org/10.1016/j.proeng.2017.08.059
- Ariff, A. M. (2007, August 13). Current issues and challenges in managing government's assets and facilities. Proceeding of the National Asset and Facilities Management (NAFAM) Convention.
- Atkin, B., & Bildsten, L. (2017). Editorial: A future for facility management. In *Construction Innovation* (Vol. 17, Issue 2, pp. 116–124). Emerald Group Publishing Ltd. https://doi.org/10.1108/CI-11-2016-0059
- Atkin, B., Leiringer, R., & Wing, R. (2006). RFID APPLICATIONS IN CONSTRUCTION AND FACILITIES MANAGEMENT (Vol. 11). http://www.itcon.org/2006/50/
- Atta, N., & Talamo, C. (2020). Digital transformation in facility management (FM). IoT and big data for service innovation. Digital Transformation of the Design, Construction and Management Processes of the Built Environment, 267–278. https://doi.org/10.1007/978-3-030-33570-0_24
- Aziz, N. D., Muhamad Ariff, N. R., & Nawawi, A. H. (2020). Reinforcing Building Information Modelling (BIM) using Kaizen in the Facilities Management Industry. *Global Business & Management Research*, 12(1), 52– 60.
- Aziz, N. D., Nawawi, A. H., & Ariff, N. R. M. (2016). ICT Evolution in Facilities Management (FM): Building Information Modelling (BIM) as the Latest Technology. *Procedia - Social and Behavioral Sciences*, 234, 363–371. https://doi.org/10.1016/j.sbspro.2016.10.253
- Bainbridge, M., & Finch, E. F. (2009). Getting the attention the facilities manager deserves. *Facilities*, 27(7), 277–290. https://doi.org/10.1108/02632770910956139

- Bentley, P. (2018). Digital Transformation Is Facilities Management Ready? In *IEEE Software* (Vol. 35, Issue 4). https://doi.org/10.1109/MS.2018.2801537
- Bröchner, J., Haugen, T., & Lindkvist, C. (2019). Shaping tomorrow's facilities management. *Facilities*, 37(7–8), 366–380. https://doi.org/10.1108/F-10-2018-0126
- Cardellino, P., & Finch, E. (2006). Mapping IT Innovations in Facilities Management. *ITcon*, *11*, 673. http://www.itcon.org/2006/47/
- Carreira, P., Castelo, T., Gomes, C. C., Ferreira, A., Ribeiro, C., & Costa, A. A. (2018). Virtual reality as integration environments for facilities management: Application and users perception. *Engineering, Construction and Architectural Management*, 25(1), 90–112. https://doi.org/10.1108/ECAM-09-2016-0198
- Chan, A. P. C., Yung, E. H. K., Lam, P. T. I., Tam, C. M., & Cheung, S. O. (2001). Application of Delphi method in selection of procurement systems for construction projects. *Constr. Manag. Econ*, 699–718.
- Chan, D. W. M., & Chan, J. H. L. (2012). Developing a performance measurement index (PMI) for target cost contracts in construction: a Delphi study. *Constr. Law J.*, 28, 590-613.
- Chang, K. M., Dzeng, R. J., & Wu, Y. J. (2018). An automated IoT visualization BIM platform for decision support in facilities management. *Applied Sciences (Switzerland)*, 8(7). https://doi.org/10.3390/app8071086
- Christiansen, B. (2020). SEVEN WAYS A CMMS IMPROVES SAFETY AT PRODUCTION FACILITIES. *Professional Safety*, 65(11), 20–21.
- Davis, F. D. Jr. (1985). Technology Acceptance Model for Empirically Testing New End User Information System: Theory and Results.
- Domingues, P., Carreira, P., Vieira, R., & Kastner, W. (2016). Building automation systems: Concepts and technology review. In *Computer Standards and Interfaces* (Vol. 45, pp. 1–12). Elsevier B.V. https://doi.org/10.1016/j.csi.2015.11.005
- Ebbesen, P. ;, & Bonke, S. (2017). Identifying concepts for studying implementation of information technology in facilities management. In *Citation*. APA.
- Elmualim, A., & Pelumi-Johnson, A. (2009). Application of computer-aided facilities management (CAFM) for intelligent buildings operation. *Facilities*, 27(11–12), 421–428. https://doi.org/10.1108/02632770910980718
- Firdauz, A. M., Sapri, M., & Mohammad, I. S. (2015). Facility management knowledge development in Malaysia: Added value in hospitality managerial competency. *Facilities*, 33(1), 99–118. https://doi.org/10.1108/F-04-2013-0034
- Gantz, J., & Reinsel, D. (2011). Extracting value from chaos . IDC Iview, 1142, 1-12.
- Gerrish, T., Ruikar, K., Cook, M., Johnson, M., Phillip, M., & Lowry, C. (2017). BIM application to building energy performance visualisation and managementChallenges and potential. *Energy and Buildings*, *144*, 218–228. https://doi.org/10.1016/j.enbuild.2017.03.032
- Gheisari, M., & Irizarry, J. (2016). Investigating human and technological requirements for successful implementation of a BIM-based mobile augmented reality environment in facility management practices. *Facilities*, *34*(1–2), 69–84. https://doi.org/10.1108/F-04-2014-0040
- Gisev, N., Bell, J. S., & Chen, T. F. (2013). Interrater agreement and interrater reliability: Key concepts, approaches, and applications. In *Research in Social and Administrative Pharmacy* (Vol. 9, Issue 3, pp. 330–338). https://doi.org/10.1016/j.sapharm.2012.04.004
- Goodhue, D. L., & Thompson, R. L. (1995). Task technology fit and individual performance. *MIS Quarterly*, *19*, 213–236.

- Goyal, S., & Pitt, M. (2007). Determining the role of innovation management in facilities management. *Facilities*, 25(1–2), 48–60. https://doi.org/10.1108/02632770710716939
- Hua, Y., Göçer, Ö., & Göçer, K. (2014). Spatial mapping of occupant satisfaction and indoor environment quality in a LEED platinum campus building. *Building and Environment*, 79, 124–137. https://doi.org/10.1016/j.buildenv.2014.04.029
- IFMA. (2017). What if FM? Https://Www.Ifma.Org/about/What-Is-Fm/.
- ISO. (2015). Facility management Management systems Requirements with guidance for use. Https://Www.Iso.Org/Standard/68021.Html.
- IWFM. (2017). What is Workplace and Facilities Management? Https://Www.Iwfm.Org.Uk/about/What-Is-Workplace-and-Facilities-Management.Html.
- Kamaruzzaman, S. N., & Ahmad Zawawi, E. M. (2010). Development of facilities management in Malaysia. *Journal* of Facilities Management, 8(1), 75–81. https://doi.org/10.1108/14725961011019094
- Kamaruzzaman, S. N., Myeda, N. E., Zawawi, E. M. A., & Ramli, R. M. (2018). Developing facilities management (FM) competencies for Malaysia: Reference from international practice. *Journal of Facilities Management*, 16(2), 157–174. https://doi.org/10.1108/JFM-08-2017-0036
- Konanahalli, A., Marinelli, M., & Selim, G. (2018). Big data: a new revolution in the UK facilities management sector. https://www.researchgate.net/publication/335033785
- Korpela, J., Miettinen, R., Salmikivi, T., & Ihalainen, J. (2015). The challenges and potentials of utilizing building information modelling in facility management: the case of the Center for Properties and Facilities of the University of Helsinki. *Construction Management and Economics*, 33(1), 3–17. https://doi.org/10.1080/01446193.2015.1016540
- Lai, J. H. K., & Yik, F. W. H. (2012). A probe into the facilities maintenance data of a hotel. *Building Services* Engineering Research and Technology, 33(2), 141–157. https://doi.org/10.1177/0143624411401840
- Lavikka, R. H., Lehtinen, T., & Hall, D. (2017). Co-creating digital services with and for facilities management. *Facilities*, 35(9–10), 543–556. https://doi.org/10.1108/F-12-2016-0101
- Lebreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and interrater agreement. Organ. Res. Methods , 11, 815–852.
- Lee, J. Y., Irisboev, I. O., & Ryu, Y. S. (2021). Literature review on digitalization in facilities management and facilities management performance measurement: Contribution of industry 4.0 in the global era. *Sustainability (Switzerland)*, 13(23). https://doi.org/10.3390/su132313432
- Li, H., Yu, J., Hilton, C., & Liu, H. (2013). Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach. *IEEE Transactions on Industrial Electronics*.
- Linstone, H. A., Turoff, M., & Helmer, O. (2002). The Delphi Method Techniques and Applications.
- Marinakis, V. (2020). Big data for energy management and energy-efficient buildings. *Energies*, 13(7). https://doi.org/10.3390/en13071555
- Marocco, M., & Garofolo, I. (2021). Integrating disruptive technologies with facilities management: A literature review and future research directions. In *Automation in Construction* (Vol. 131). Elsevier B.V. https://doi.org/10.1016/j.autcon.2021.103917
- Matarneh, S. T., Danso-Amoako, M., Al-Bizri, S., Gaterell, M., & Matarneh, R. (2019). Building information modeling for facilities management: A literature review and future research directions. *Journal of Building Engineering*, 24(March), 100755. https://doi.org/10.1016/j.jobe.2019.100755

- Mohanta, A., & Das, S. (2016). ICT-Based facilities management tools for buildings. Advances in Intelligent Systems and Computing, 408, 125–133. https://doi.org/10.1007/978-981-10-0129-1_14
- Mohd Isa, N., Nizam Kamaruzzaman, S., Mohamed, O., Jaapar, A., & Zaliza Asbollah, A. (2016). Facilities Management Practices in Malaysia: A Literature Review. *MATEC Web of Conferences*. https://doi.org/10.1051/00054
- Moore, M., Finch, E., Asia, T., & Finch, P. E. (2004). Facilities Management in South East Asia Content Indicators: Research Implications** Practice Implications** Originality** Readability**. 22(10), 259–270.
- Motamedi, A., Hammad, A., & Asen, Y. (2014). Knowledge-assisted BIM-based visual analytics for failure root cause detection in facilities management. *Automation in Construction*, 43, 73–83. https://doi.org/10.1016/j.autcon.2014.03.012
- Motamedi, A., Saini, R., Hammad, A., & Zhu, B. (2011). Role-based access to facilities lifecycle information on RFID tags. *Advanced Engineering Informatics*, *25*(3), 559–568. https://doi.org/10.1016/j.aei.2011.03.004
- Myeda, N. E., & Pitt, M. (2014). Facilities management in Malaysia: Understanding the development and practice. *Facilities*, 32(9–10), 490–508. https://doi.org/10.1108/F-02-2012-0012
- Rogers, E. M. (2003). Diffusion of Innovations, 5th Edition: Vol. Fifth Edition (Fifth). Free Press.
- Shamser Ali, S., & Tyagi, R. (2020). The Challenges and Benefits of Facility Management. *International Journal of All Research Education and Scientific Methods*, 8(9), 248–253. https://www.researchgate.net/publication/344298853
- Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007). The Delphi Method for Graduate Research the Delphi Method for Graduate Research. In *Journal of Information Technology Education* (Vol. 6).
- Straub, E. T. (2009). Understanding technology adoption: Theory and future directions for informal learning. *Review* of Educational Research, 79(2), 625–649. https://doi.org/10.3102/0034654308325896
- Sulaiman, M., Sulaiman, M., Liu, H., Binalhaj, M., Al-Kasasbeh, M., & Abudayyeh, O. (2021). ICT-based integrated framework for smart facility management: an industry perspective. *Journal of Facilities Management*, 19(5), 652–680. https://doi.org/10.1108/JFM-11-2020-0084
- Suprabhas, K., & Dib, H. N. (2017). Integration of BIM and Utility Sensor Data for Facilities Management. ASCE International Workshop on Computing in Civil Engineering 2017.
- Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. *Procedia Manufacturing*, 22, 960–967. https://doi.org/10.1016/j.promfg.2018.03.137
- Teicholz, E. (2013). *Technology for facility managers- The impact of cutting edge technology on facility management.* John Wiley & Sons Inc.
- Tsai, M.-H., Mom, M., & Hsieh, S.-H. (2014). Developing critical success factors for the assessment of BIM technology adoption. Part I: Methodology and survey. J. Chin. Inst. Eng., 37(7), 845–858.
- Wong, J. K. W., Ge, J., & He, S. X. (2018). Digitisation in facilities management: A literature review and future research directions. *Automation in Construction*, 92(April), 312–326. https://doi.org/10.1016/j.autcon.2018.04.006
- Zawawi, Z. A., Khazli, M., Khalid, A., Ahmad, N. A., Zahari, N. F., Aras, N., & Salim, A. (2016). Operation and Maintenance in Facilities Management Practices: A Gap Analysis In Malaysia. https://doi.org/10.1051/00116