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ABSTRACT

A fault diagnosis scheme for nonlinear time series recorded
in normal and abnormal conditions is described. The fault
is first detected from regression lines of the raw time series.
Model for the normal condition time series is estimated
using a Finite Impulse Response (FIR) neural network. The
trained network is then used for filtering of abnormal
condition time series. The fault is further confirmed/
analyzed using the regression lines of the predicted normal
and inverse-filtered abnormal conditions time series.

The described scheme is applied to two fault diagnosis
problems using acoustic and vibration data obtained from
rotating parts of an automobile and a boring tool,
respectively.
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1.0 INTRODUCTION

In many scientific, economic, and engineering applications
there arises the problem of system identification and
modeling of linear/nonlinear time series. Once the model is
derived it can be used either for prediction, fault diagnosis,
pattern recognition, or pattern classification.

Very often in practice a relationship is found to exist
between two (or more) variables in an unknown system. It
is frequently desirable to express this relationship in
mathematical form by determining an equation connecting
the variable. If the relationship between the variables is
linear then a straight line can approximate the given set of
data. If it is nonlinear then the approximated curve would
be a nonlinear curve e.g. parabola or hyperbola etc.

Signal processing techniques have been studied deeply in
both frequency and time domains. It has been reported that
the Fast Fourier Transform does not provide good
frequency resolution and its windowing process causes
spectral leakage in the frequency domain [1]. The
parameter modeling techniques such as Yule’s auto-
regressive technique [2] has been used widely in prediction
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of the future values. However, there are simple cases, for
which this technique is inadequate [3].

In many real-world problems, data are masked by noise and
some dynamic processes are described by chaotic time
series in which the data seem to be random without
apparent periodicity [4]. The Neural Network (NN), being
able to acquire knowledge by a learning process and store
in massively parallel/distributed synaptic weights, can solve
such complex problems that are intractable. The NNs are
successfully used in fields like modeling, time series
analysis, pattern recognition, signal processing, and control.

While using NN for system identification, the sample data
modify parameters in the neural estimator and bring the
neural system’s input-output responses closer to the input-
output response of the unknown model [5]. System
identification is also performed using general parameter
(GP) neural networks [6, 7].

A kind of neural network that has short-term memory in the
form of tapped delay lines, known as time delay neural
network (TDNN), has been used in speech processing [8,
9]. A class of TDNN that uses finite-duration impulse
response (FIR) filters in its input and hidden layers, known
as FIR network, are used in time series prediction [10, 11].

In this paper a fault diagnosis scheme [12, 13] for nonlinear
time series is described. The fault is detected from
regression lines of the raw and filtered time series, where
FIR network is used for modeling and filtering the time
series. The described scheme is applied to parts/tool
breakage detection problems using acoustic and vibration
data obtained in normal and abnormal conditions from
rotating parts of an automobile and a boring tool,
respectively.

The paper is organized as follows: Details of linear
regression model are given in Section 2. Section 3
introduces standard neural network and FIR network.
Section 4 elaborates the scheme of fault diagnosis using
linear regression model and FIR network and its application
to parts/tool breakage detection problems. Section 5
concludes the paper after discussing the results and future
work.
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20 LINEAR REGRESSION MODEL

Regression analysis is statistical techniques for modeling
and investigating the relationship between variables
embedded in an unknown system. In the case of simple
linear regression a single regressor or predictor X and a
dependent or response variable Y is considered. For linear

relationship the model is:
y=B,+Bx+¢ @

where intercept 3, and the slope 3, are unknown

regression coefficients, and € is a random error with mean

zero and variance 0°. The criterion for estimating the
regression coefficients is called as method of least squares.
The fitted or estimated regression line [14] is therefore

y= Bo + le 2)
. . Sy (x -

where B, =Y—-B,X, B, = ';1 5. Y isthe
Zi:]_ (Xi - K)

estimated trend value, Y =( n)zin:1 Y,, and

X={/n)y X

3.0 NEURAL NETWORK PPROACH

A typical use of NN is (nonlinear) regression, where the
task is to find a smooth interpolation between points. The
time series modeling involves processing of patterns that
evolve over time, i.e. the appropriate response at a
particular point in time depends not only on the current
value of the observable but also on the past. A general
view of a neural network is given in Fig. 1.
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Fig. 1: A Typical Neural Network with One Hidden Layer

3.1  System ldentification Using Neural Network

Suppose d = f(X) describes the input-output relation of
an unknown time invariant multiple input-multiple output

58

(MIMO) system. Let Y; denotes the output of the neural
network produced in response to an input vector X;. The
difference between d, (associated with X;) and the

network output Y; provides the error signal vector €;, as

depicted in Fig. 2. This error signal is in turn used to adjust
the free parameters of the network to minimize the squared
difference between the outputs of the unknown system and
the neural network in a statistical sense, and is computed
over the entire training set.
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Fig. 2: Block Diagram of System Identification Using
Neural Network

3.2  Finite-Duration Impulse Response (FIR) Filter

Network

To understand the function of a FIR network, a single
neuron extracted from the Ith layer of an L-layer static
feedforward neural network adopted from [11] is

represented in the Fig. 3. The output of the neuron, X'J-+1, is
taken as a sigmoid function of the weighted sum of its

inputs:
X\ = f @ZW;JX; H
. il

where XiI and Wilyj are inputs and weights of the neuron,

©)

respectively.

A modification of the basic neuron can be accomplished by
replacing each static synaptic weight by a FIR linear filter
as shown in Fig. 4. For the simple FIR filter, the output

y(K) corresponds to a weighted sum of the past delayed
values of the input:

y(k) = ¥ w(n)x(k -n) @
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1.0
Fig. 3: A Static Neuron Model (Feedforward Path)

FIR filters

X (k)
X, (k)

X,(k)

1.0
Fig. 4: A FIR Neuron Model (Feedforward Path)

The feedforward response of the FIR network can be
written as:

X"(K) = fgzw:,,- 5% (k)@

where X'j+l(k) is the output of a neuron in layer | at time

(5)

Kk taken as the sigmoid function of the sum of all filter
outputs that feed the neuron. Comparing Equations 3 and 5
we may note that the scalars are replaced by vectors. As
contrast to standard error backpropagation [15] used in
static feedforward neural networks, temporal back-
propagation is used in FIR networks. The feedback path of
selected static and FIR neurons are shown in Figs. 5 and 6,
respectively. Complete detail of FIR network is given in
[11, 16].
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Fig. 5: A Static Neuron Model (Feedback Path)
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Fig. 6: A FIR Neuron Model (Feedback Path)
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4.0 FAULT DIAGNOSIS SCHEME

In the fault diagnosis scheme proposed in [12, 13] the fault
is first detected from regression lines of the raw time series,
obtained in normal and abnormal conditions, using least
square method described in Section 2. Model of the normal
condition time series is then estimated using FIR network.
The trained network is then used for inverse filtering of
abnormal time series. The fault is further confirmed/
analyzed using the regression lines of the predicted normal
condition time series and inverse-filtered abnormal
condition time series.

The above described fault diagnosis scheme is applied to
parts/tool breakage detection problems using acoustic data
obtained from rotating parts of an automobile and vibration
data recorded from a boring tool.

4.1 Rotational Parts Breakage Detection Using
Acoustic Data

The described scheme is applied to an automobile’s rotating
parts breakage detection problem using acoustic data
recorded in normal and abnormal conditions through
Integrated Sound Level Meter LA-5110, as shown in Fig. 7.
Regression lines (Fig. 8) are first plotted for the raw data,
using Equation 2, where a significant difference in the
amplitude clearly demonstrates the existence of a fault.

) &9 m—)
1

LA-5110

Rotational

Parts Host PC

Fig. 7: Rotational Parts Fault Diagnosis Experimental Setup

In this study the FIR network is used to estimate the model
for normal condition data. Before model estimation, the
two time series are normalized for the range -1 to +1.
While using FIR networks, selection of number of layers
and taps per layer is quite critical. After performing several
simulations the best set of number of layers and taps is
selected where the mean squared error (MSE) is low and
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prediction is good after 10,000 epochs of training. The
MSE pattern for the training set of normal condition data is
shown in Fig. 9, which clearly indicates that the error goes
to zero in around 20 epochs of training. The network with
the best set of layer/taps is then trained for up to 30,000
epochs. The selected network structure for acoustic normal
condition data with final MSE is given in Table 1.

In total we have 1000 points data. Initial 900 points of
normal condition data are used for training and the next 100
data points are used for validation. The input and output of
a trained network for normal condition data are shown in
Fig. 10, where model estimation capability of a FIR
network of an unknown system is quite visible. The
predicted data almost follows the training data. The tapped
delay lines in FIR network provide short-term dynamic
memory for input data that eventually help in better
modeling and prediction of data.
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Fig. 8: Regression Lines of the Raw Acoustic Data
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Fig. 9: MSE Pattern for Training Set of Acoustic Normal
Condition Data (900 Points)

The normalized abnormal condition time series data are
then fed into the FIR network trained for normal condition
data. This process may be called as inverse filtering. We
adopted this process in order to differentiate clearly
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between normal and abnormal conditions time series. The
regression lines (Fig. 11) for the predicted normal condition
data and the inverse filtered abnormal condition data, are
then plotted using Equations 2. A significant difference in
these two lines confirms the existence of the fault that was
first detected from the observation of the linear regression
lines of the two original time series (Fig. 8).
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Fig. 10: Input and Output of the Network Trained with
Normal Condition Acoustic Data
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Fig. 11: Regression Lines of the Predicted Normal
Condition and Inverse-Filtered Abnormal Condition
Acoustic Data
4.2  Boring Tool Breakage Detection Using Vibration
Data

The described scheme is applied a boring tool breakage
detection problem. An accelerometer (PV-65) is used to
acquire the vibration data in normal and abnormal
conditions. The data acquisition scheme is shown in Fig.
12. Regression lines are first plotted for the raw data using
Equation 2, as shown in Fig. 13. Significant differences in
the amplitudes and shapes of these lines clearly exhibit the
existence of a fault.
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Fig. 12: Boring Machine Fault Diagnosis Experimental
Setup
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Fig. 13: Regression Lines of the Raw Vibration Data
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The FIR network is then used to estimate the model for
normal condition data. Before model estimation both the
normal and abnormal conditions time series data are
normalized for the range -1 to +1. Out of total 1000 data
points, initial 900 points of the normal condition data are
used for training and the remaining 100 data points are used
for validation as in the case of acoustic data. The MSE
pattern for the training set of normal condition data is
shown in Fig. 14, where it can be observed that error signal
goes to zero in around 10 epochs of training.

The network with the best set of layers/taps, selected after
rigorous simulation, is trained for up to 30,000 epochs. The
selected FIR structure for modeling the normal condition
vibration data is given in Table 1, where we can notice that
only 15 taps in the input layer were enough to model the
vibration data as compare to 30 taps in the case of acoustic
data. The input and the predicted output of a trained
network for normal condition data are shown in Fig. 15
where the model estimation capability of FIR network is
again clearly visible.

Table 1: FIR Network Structures for Acoustic and
Vibration (Normal Condition) Data

Network Structure | Acoustic Data | Vibration Data

Layers 2 2
Input Node 1 1

Input Taps 10/node 18/node
Hidden Nodes 30 15

Hidden Taps 3/node 3/node
Output Node 1 1

Epochs 30,000 30,000

MSE 0.000113998 0.00401513

The normalized abnormal condition time series data are
then inverse filtered through the FIR network. The
regression lines for the time series, i.e. predicted normal
condition data and filtered abnormal condition data, are
shown in Fig. 16. Again a significant difference in the two
lines confirms the existence of the fault that was first
detected from the observation of the regression lines of the
two original time data (Fig. 13).

2 -
1.8
1.6
1.4
12

1

MSE

0.8 H

0.6 H

0.4 H

0.2 rf

0

o o =) o o o =)
S D S B 5] 2 3
& Y 23 © 5 < B

- o =3 o
e} S e}
= =

Epoch
Fig. 14: MSE Pattern for Training Set of Normal Condition
Vibration Data (900 points)
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Fig. 15: Input and Output of the Network Trained with
Normal Condition Vibration Data
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Fig. 16: Regression Lines of the Predicted Normal
Condition and Inverse-Filtered Abnormal
Condition Vibration Data

5.0 CONCLUSION

The described fault diagnosis scheme is applied to two real-
world problems using acoustic and vibration data recorded
from rotating parts of an automobile and a boring tool.
Initial fault detection using regression lines of the raw data
are confirmed from the regression lines of the predicted
normal and filtered abnormal conditions’ data. The process
of filtering the abnormal condition data, through the FIR
network trained for normal condition data, provides more
detailed information about the fault. Hence it can be said
that the described fault diagnosis scheme is suitable for the
given two fault diagnosis problems. The FIR network is
found suitable for model estimation of unknown systems,
which may be helpful for other applications such as pattern
recognition, etc.

To achieve better approximation of the unknown system
some preprocessing or filtering technique e.g. moving
average or median filter may be helpful.

The selected FIR network structure is good only for the
used application. To estimate model for other data fresh
simulation would be needed.
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