
Malaysian Journal of Computer Science, Vol. 14 No. 1, June 2001, pp. 58-67 

58 

COGNITIVE TASK PREDICTION USING PARAMETRIC SPECTRAL ANALYSIS OF EEG SIGNALS  
 
 

R. Palaniappan and P. Raveendran 
Dept. of Electrical and Telecommunication 

Engineering Faculty 
University of Malaya 
50603 Kuala Lumpur 

Malaysia 
Tel: 603-79595332/5253 

email: psar@fk.um.edu.my 
 ravee@fk.um.edu.my 

 
 
ABSTRACT 
 
In this paper, we are proposing a method to predict cognitive tasks performed by the human brain using spectral 
analysis of electrical signals extracted from the scalp of the brain.  These electrical signals, which are generated by 
the synapses and neurons in the brain, are also known as Electroencephalogram (EEG) signals.  The EEG signals 
are analysed using autoregressive spectral analysis, a type of modern parametric spectral analysis method, which 
comparatively yield better power spectrum over the classical Fourier methods.  Power spectral densities of the EEG 
signals are used to train a Fuzzy ARTMAP network to predict the respective cognitive tasks.  In our experimental 
study, we have analysed 3 subjects performing 2 different cognitive tasks and our average results of 72.22% to 
93.05% for each subject show that it is highly possible to predict cognitive tasks based on EEG signals.  This can be 
used as a mode of communication or wheelchair control for paralysed patients and also in EEG biofeedback 
systems. 
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1.0 INTRODUCTION 
 
Although the spontaneous electrical activity of the brain or the electroencephalogram (EEG) was  discovered in 
rabbits and monkeys more than a century ago by Caton in 1875 [7] and the first report concerning the human EEG 
appeared more than 60 years ago [8], much remains to be clarified about the nature and the origin of the EEG.  
Nonetheless, very soon after its discovery in humans, EEG became an important diagnostic tool and it has remained 
so.  From 1924 to 1938, Berger [8] laid the groundwork of our present applications of EEG.  Since then, a gradual 
realisation of EEG in the application of controlled information has led to significant correlations with regard to brain 
functioning in certain mental and behavioural states.  However, in EEG, the revolution of computerisation has not 
turned out to be far reaching and enduring as the revolution in neuro-imaging brought about by computerised axial 
tomography (CAT), magnetic resonance imaging (MRI), and positron emission tomography (PET).  And yet, as a 
non-invasive clinical tool for evaluating brain function, the EEG continues to be very useful.  Furthermore, spectral 
analysis of EEG signals has evolved over the past three decades with much of the effort directed towards a better 
understanding of the functioning of the brain. 
 
These EEG signals are composed of oscillating potentials derived from the scalp surface and originating from the 
electrical activity of the brain; specifically EEG signals are generated by neurons and synapses in different areas of 
the brain.  The potentials may vary in frequency from less than 1 to 50 Hz and achieve amplitudes up to 50 µV.  
However, there is a concentration of frequency ranges in normal individuals.  This varies from 8 to 13 Hz, which is 
known as alpha rhythm, beta potentials are those higher than 13 Hz, theta rhythms are at 4-7 Hz and the slow delta 
rhythms range between 0.5 and 3.5 Hz. 
 
In this paper, we are proposing a method to predict cognitive tasks performed by the human brain using spectral 
analysis of these EEG signals.  A benefit of this system is as a means of communication between paralysed patients 
and their external environment i.e. as an interface for use by people with severe physical disabilities.  As the 
technology advances, it is envisaged that this technique could be used by anyone for rudimentary user-interface 
actions, like popping up windows and making menu choices.  These systems can also be used in wheelchair 
movement control for paralysed patients in addition to providing useful information in EEG biofeedback systems. 
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Digital spectral analysis using linear parametric methods like autoregressive (AR) models have proven to be 
superior to classical Fourier transform techniques like Discrete Fourier Transform (DFT) using the periodogram 
approach.  This is due to the ability of Autoregressive Spectral Analysis (ARSA) models to handle short segments of 
data while giving better frequency resolution and smoother power spectra than Fourier methods.  Furthermore, AR 
methods need only one or more cycles of sinusoidal-type activity to be present in the segment to produce good 
spectral peaks and they also provide the ability to observe small shifts in peak frequencies, which are not easily 
observed with periodogram derived spectra [9]. 
 
In this study, EEG signals from 3 subjects are extracted while performing 2 different cognitive tasks.  The signals 
are segmented and two different statistical model order criteria are applied namely Akaike Information Criterion 
(AIC) and Final Prediction Error (FPE) before the AR coefficients are obtained.  The AR model coefficients can be 
estimated by solving a set of linear equations using the Yule-Walker method or solving recursively for higher orders 
using Levinson-Durbin [2] or Burg method [3].  Burg’s method is used in this paper since it minimises not only 
forward prediction error but also backward prediction error unlike Levinson-Durbin (LD), which minimises only the 
forward prediction error.  This method also derives AR coefficients directly from the data where as LD method 
requires the use of autocorrelation (AC) method, which is erroneous for small length of data.  Next, ARSA method 
is used to generate power spectral densities (PSD) of these EEG segments.  These PSD values are then used to train 
a Fuzzy ARTMAP (FA) neural network to predict the cognitive tasks for the test EEG patterns.  FA network is used 
instead of other popular neural networks since it has low training time and gives good accuracy in addition to being 
plastic while maintaining stability. 
 
Section 2 gives an introduction to EEG signals.  In section 3, we give a description of the ARSA method including 
the statistical model order criteria and AR coefficient estimation using Burg’s algorithm.  Section 4 discusses Fuzzy 
ARTMAP while Section 5 treats the experimental study and results.  The paper is concluded in Section 6. 
 
 
2.0 EEG SIGNALS 
 
Electroencephalogram (EEG), is a measure of brain activity.  The word comes from the Latin ‘encephalon’, which 
means ‘brain’.  EEG is measured using electrodes (small metal pieces) attached to the skull surface.  Nerve cells in 
the brain constantly create very small electrical signals.  The actual generator of these potentials is thought to be 
neurons in the cortex (the outer part of the brain).  The electrode is however large in comparison to the neurons, so 
what can be seen on an EEG signal is a summation of the activity of thousands or millions of neurons.  The EEG 
machine contains amplifiers, which amplifies these brainwaves signals, large enough so that we can see them.  The 
electrical signals are picked up by electrodes glued to the scalp, and travel to the amplifiers of the EEG machine and 
then are either written out on paper or saved on the hard drive of a computer and displayed on the computer's 
monitor or used in computerised signal analysis. 
 
2.1 Method of Deriving EEG Signals (Montages) 
 
There are three traditional methods of deriving electrical signals from an electrode array.  These montages  are 
commonly described as bipolar, unipolar (or monopolar) and average reference methods.  However, it must be 
remembered that all derivations are essentially bipolar in the sense that the detecting device must be connected 
between two points and will indicate the potential difference between them.  The average reference method is not 
very popular and will not be discussed further. 
 
In the bipolar method, each channel is connected between two electrodes both of which are likely to be affected by 
appreciable EEG potentials i.e. active areas of the brain.  Monopolar method however, uses two electrodes – one 
connected to the EEG active area and another from a reference of zero potential (typically placed at the earlobe).  In 
certain literatures, we find the term common reference is used.  It actually denotes monopolar readings but with all 
the reference channels located on a common electrode.  This common reference method is employed in this paper 
since it reduces the number of electrodes required.  
 
Note that the amplifier looks at the two electrode signals coming into it and cancels out signals that are the same.  
So, the signal that is seen on the paper or on the computer screen is actually the difference between the electrical 
activities picked up by the two different electrodes.  Fig. 1 shows an example of EEG waveform obtained in the 
experimental study of this paper. 
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Fig. 1: An extracted EEG segment 
 
2.2 Electrode Placement 
 
Electrode placement is also an important topic in EEG analysis.  The placement of the electrodes is important 
because the closer the electrodes are to each other, the less are the differences in their brainwaves.  Therefore, if the 
electrodes are too close, the EEG will look like a straight line instead of showing the brainwaves.  However, this 
problem does not arise for monopolar readings using common reference scheme since the reference channel is of 
zero potential.  In this research, we have used the 10-20 international method [10] to place the electrodes, which 
consists of 19 active channels plus 2 reference channels.  There is also the 64-channel EEG electrode placement 
using Standard Electrode Position Nomenclature, American Electroencephalographic Association but this method 
was opted out due to high number of channels, which is unnecessary for the application discussed in this paper.  Fig. 
2 shows the 10-20 international system of EEG electrode placement.  In this system, we have used 6 active channels 
plus 2 reference channels (refer to Section 5). 
 

 
 

Fig. 2: 10 –20 International system for EEG electrode placement  
 
2.3 Artifacts 
 
Another, not always wanted, source of these potentials is muscular activity such as eye and head movements, also 
known as artifacts.  However, eye movements can be filtered using additional electrodes placed above and below the 
eye.  This process of detecting eye movements is known as electroculography (EOG).  When the reading from these 
electrodes show high potentials in less than 100 ms, then an eye movement has occurred and the EEG signals from 
the brain for that particular period of time should be removed from the analysis.  Muscle artifacts from other parts of 
the body i.e. Electromyogram (EMG) can be removed using digital filtering in the frequency domain.  This is since 
most normal EEG signals do not exceed 50 Hz.  Therefore, a low pass filter designed to cut off at this frequency 
would filter out these unwanted higher frequency spectrum. 
 
Electrical interferences also do pose a treat to corrupt EEG signals. But these are easily filtered out since they show 
up with a peak according to their power distribution frequency.  For example, in Malaysia, the frequency of the 
electrical power is about 50 Hz and frequency peaks close to this value can be filtered out. 
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3.0 SPECTRAL ANALYSIS OF EEG SIGNALS  
 
Interpretations of EEG signals visually often require expert medical or technical professionals.  To overcome this 
problem and to automate EEG analysis, spectral analyses of EEG signals have been proposed [9, 13].  This is since 
an EEG signal can be regarded as a time series, which can be analysed mathematically.  Usually, this analysis 
cannot be applied exactly because the necessary theoretical conditions cannot be met in practice.  However, with 
some minor modifications and assumptions, these methods provide a useful approach to studying EEG signals.  This 
is similar to the analysis of signals in other branches of science like seismography and in the study of ocean waves. 
 
3.1 Theoretical Basis of EEG Frequency Analysis 
 
Frequency analysis is the process of separating a signal into its frequency components.  Each frequency component 
in the spectrum has an associated phase, which can be expressed as a function of frequency; the result is called a 
phase spectrum.  Therefore, to describe a signal uniquely, both an amplitude spectrum and a phase spectrum are 
required.  Often, the amplitude values are squared and the result of analysis is called a power spectrum.  The sum of 
the values of the power spectrum is equal to the total power or mean squared value of the original signal (Parseval’s 
theorem).  This is why power or variance measures often used instead of amplitude measures in signal analysis since 
the sum of component amplitudes is not equal to the total amplitude because of phase effects. 
 
Using frequency analysis, the proportion of a signal attributable to a particular frequency or range of frequencies can 
therefore be measured.  In our case, the power spectrum is scaled so that the area under the spectrum is equal to the 
mean squared value of the original signal and the spectrum is called a power density spectrum or power spectral 
density (PSD).  
 
3.2 Fourier Analysis  vs  Parametric Spectral Analysis 
 
Frequency analysis using Fourier methods are popular.  DFT or the computationally efficient FFT with periodogram 
method are commonly applied for EEG spectral analysis.  However, there are numerous disadvantages with these 
non-parametric methods as compared to parametric spectral methods like AR method1.  Parametric methods also 
give smoother spectrums as compared to non-parametric methods.  Although using data windows can smooth 
Fourier spectrum (which is the Blackman-Tukey method), it must be noted however that this does distort the true 
spectrum due to side lobe leakages. 
 
Fourier analysis requires multiple periods for the particular spectral peak to appear unlike the ARSA using Burg’s 
method, which requires the data segment to contain only a single period to produce a pronounced peak [9].  
 
ARSA methods also give better frequency resolution while avoiding picket fence and scalloping loss effects faced 
by Fourier methods.  DFT consists of harmonic amplitude and phase components regularly spaced in frequency.  
The spacing of the spectral lines depends on the number of data samples, decreasing with the number of data.  
Therefore, we will not be able to estimate accurately the frequency component of the signal in between these two 
adjacent harmonic frequency components.  This problem is better known as picket fence effects.  The solution to 
this problem lies in augmenting zeros to the data.  However, this results in scalloping loss, which is designed to 
represent the maximum reduction in processing gain, which occurs mid-way between the harmonically related 
frequencies. 
 
3.3 Autoregressive Spectral Analysis 
 
A real valued, zero mean, stationary, non-deterministic, autoregressive process of order p is given by 
 

)()(
1

)( neknx
p

k kanx +−∑
=

−= , 
 

(1) 

 
where p is the model order, x(n) is the data of the signal at sampled point n, ak are the real valued AR coefficients 
and e(n) represents the error term independent of past samples.  In some literatures, the error term is also known as 
residual, random shock or innovation.  The term autoregressive implies that the process x(n) is seen to be regressed 

                                                 
1 Parametric models like AR require only a small set of parameters to fit the model.  However, non-parametric models like 
Fourier spectrum require infinite number of parameters to specify the process.  



Palaniappan and Raveendran 

62 

upon previous samples of itself.  The error term is assumed to be a zero mean white noise with finite variance, 2
eσ .  

In applications, the values of ak and 2
eσ  have to be estimated from finite samples of data x(1), x(2), x(3), ………., 

x(N). 
 
Many different techniques have been proposed to estimate ak, each with its own merits and demerits.  However, the 
most common method is to use the autocorrelation technique of solving the Yule-Walker equations [2].  We can 
solve the Yule-Walker equations directly using conventional linear equation solutions like Gaussian elimination but 
a shortcoming of this approach lies in its huge computational time.  Thus, recursive algorithms have been developed 
which are based on the concept of estimating the parameters of a model of order p from the parameters of a model of 
order p-1.  Some of these methods are like Burg’s algorithm [3] and Levinson–Durbin (LD) algorithm [2]. 
 
Burg’s method is more accurate than LD since it uses the data points directly unlike the latter method, which relies 
on the estimation of the autocorrelation function, which is generally erroneous for small data segments.  The earlier 
method also uses more data points simultaneously by minimizing not only a forward error (as in the Levinson-
Durbin case) but also a backward error.  This algorithm will be discussed later. 
 
3.4 Statistical Model Order Selection Methods  
 
Before an AR process could be used, there is a prerequisite of having to know the order of the model.  Most order 

selection criteria are transformations of the mean squared error2, 2
eσ  which is computed as a function of the order 

in model estimation.  These techniques employ a multiplication of this error and a cost function, which increases 
monotonically with order p.  Methods pioneered by Akaike [1] are popular and two model order selection criteria 
developed by him i.e. AIC and FPE are based upon concepts in mathematical statistics.  FPE method gives the 
model order, which minimises the function below: 
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where p is the model order, N is the number of data points, )(2ˆ peσ  is the estimated error variance for  the model.  If 

the mean value of the data has been subtracted, then the unbiased estimate of this error variance is given as [12]: 
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and the FPE is now given by: 
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(4) 

 
The fractional portion of FPE increases with p and as such represent the inaccuracies in estimating the AR 
parameters.  The principle behind the FPE criterion is that the unbiased estimate of the error variance is multiplied 
by the factor: 
 

Np /1 + , (5) 
 
where p is the number of parameters to be estimated and N is the number of points observed.  This factor allows for 
the increase in the error variance when the estimated coefficients are used to make predictions on new, independent 
data. 
 

                                                 
2 In this paper, mean squared error is used interchangeably with error variance.  This is since the error is assumed to be white 
noise where the mean value is zero. 
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Akaike then extended this model selection criterion to any maximum likelihood situation.  This other criterion is 
called AIC and is given by: 
 

AIC(k)=-2ln(maximum likelihood) + 2k , (6) 
 
where k is the number of parameters estimated. Using this method, the order of the model is selected which 
minimises the following function: 
 

ppeNpAIC 2)(2ˆ̂ln)( += σ . (7) 

 
The term 2p represents the penalty for selecting higher orders.  The two criteria are asymptotically equivalent and in 
the limit of large N, FPE and AIC will predict the same optimal order. 
 
3.5 Burg’s Method 
 
Burg’s method is common is AR literatures and as such, we’ll only discuss briefly the algorithm behind this method.  
The algorithm is as follows: 
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3. Update Error and AR coefficients 
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• Forward Error Update, )1(1)1()( −−+−= mnbmmnemne π  

• Backward Error Update, )1()1(1)( −+−−= mnemmnbmnb π  

 
4. Repeat steps 2 and 3 (with m incremented by one) until the selected model order p is reached. 

 
Proofs and details of this algorithm can be found in [3]. 
 
3.6 Autoregressive Spectral (ARSA) Estimation 
 
After selecting the order of the model by the any one of the discussed criterion, we can proceed with the estimation 
of the AR coefficients using Burg’s algorithm.  These coefficients are then used to obtain the power spectral density 
(PSD) values by using the equation: 
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where S(f) represents the power spectral density function, T is the sampling period and Se(f) represents the power 
spectrum of the error sequence.  Since the term Se(f) applies to the errors or residuals which are in theory white, the 
resulting power spectrum should be flat and therefore Se(f) should be a constant independent of the frequency.  
Ideally, the value of this constant (noting that the mean of the residuals are zero) will be directly proportional to the 
variance of the residuals.  Hence, the final expression for the conventional AR spectral estimate is obtained by 

replacing Se(f) with Tpe )(2ˆ̂σ  where )(2ˆ̂ peσ  is the unbiased estimated variance of the residuals and the term T is 

included so that the true power of the signal will be represented digitally.  The final PSD equation is given by: 
 

∑
=

−
= p

k
fkTieka

TpfS

0
2|2|

2ˆ̂
)(

π

σ
. 

 
 

(9) 

 
 
4.0 FUZZY ARTMAP 
 
This section introduces Fuzzy ARTMAP (FA) network.  Fuzzy ARTMAP belongs to the ART family.  There are 
several variations of these ART neural networks, namely ART1, ART2, ART3, Fuzzy ART, Distributed ARTMAP, 
Fusion ART, Fuzzy ARTMAP and ART-EMAP.  These systems were initially developed by Carpenter and 
Grossberg [4]. 
 
ARTMAP is a class of neural network that performs incremental supervised learning of recognition categories.  
Earlier Adaptive Resonance Theory models like ART1 and ART2 consisted of unsupervised learning systems.  In 
this paper, a more general ARTMAP system known as Fuzzy ARTMAP is used.  This system learns to classify 
inputs by using fuzzy set features i.e. the input features are from 0 to 1.  This is accomplished by replacing the 
ART1 module of the binary ARTMAP system with Fuzzy ART module. 
 
FA incorporates fuzzy set theory in its computation and as such it is able to learn stable responses to either analog or 
binary valued input patterns.  It consists of two modules (Fuzzy ARTa and Inter ART) that create stable recognition 
categories in response to sequence of input patterns.  During supervised learning, Fuzzy ARTa receives a stream of 
input features representing the pattern and Inter ART module maps the output of Fuzzy ART a to the respective target 
of the pattern.  It is actually an associative controller that creates a minimal linkage of recognition categories 
between the Fuzzy ARTa module and target classes to meet a certain accuracy criteria.  This is accomplished by 
realizing a learning rule that minimizes predictive error and maximizes predictive generalization.  It works by 
increasing the vigilance parameter ρa of Fuzzy ART a by a minimal amount needed to correct a misclassification or 
predictive error.  
 
Parameter ρa calibrates the minimum confidence that Fuzzy ARTa must have in a recognition category, or 
hypothesis that is activated by an input vector in order for Fuzzy ARTa to accept that category, rather than search for 
a better one through an automatically controlled process of hypothesis testing.  Lower values of ρa enable larger 
categories to form and lead to a broader generalization and higher code compression.  A predictive failure increases 
the minimal confidence ρa by the least amount needed to trigger hypothesis testing at Fuzzy ART a using a 
mechanism called match tracking.  Match tracking sacrifices the minimum amount of generalization necessary to 
correct the predictive error.  Match tracking leads to an increase in the confidence criterion just enough to trigger 
hypothesis testing which leads to a new selection of Fuzzy ARTa category.  This new cluster is better able to predict 
the correct target class as compared to the cluster before match tracking.  Further details of this method can be found 
in [4, 5, 6]. 
 
 
5.0 EXPERIMENTAL STUDY 
 
In this paper, we study the ability of the FA network using ARSA method to predict two types of cognitive tasks.  
The performance of different types of order selection criteria for ARSA models to represent EEG signals are also 
experimented.  These statistical criteria are AIC and FPE.  In addition, an experiment is also conducted with a fixed 
6th order model since Keirn and Aunon [13] have used it in their experiments. 
 
The subjects are seated in an Industrial Acoustics Company sound controlled booth with dim lighting and noiseless 
fans for ventilation.  An Electro­Cap elastic electrode cap is used to record EEG signals from positions C3, C4, P3, 
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P4, O1 and O2, defined by the 10­20 system of electrode placement.  The electrodes are connected through a bank 
of amplifiers and band-pass filtered from 0.1-100 Hz.  The data is sampled at 250 Hz with a 12 -bit A/D converter 
mounted on a computer. 
 
For this paper, the data from three subjects performing two different mental tasks are analysed.  These tasks were 
chosen by Keirn and Aunon to invoke hemispheric brainwave asymmetry [13].  These tasks are:  
 

• Math task, for which the subjects were given nontrivial multiplication problems, such as 12 times 18, and 
were asked to solve them without vocalizing or making any other physical movements; 

• Geometric figure rotation, for which the subjects were asked to visualize a particular 3D block figure 
being rotated about an axis. 

 
Data was recorded for 10 seconds during each task and each task was repeated for two sessions.  With a 250 Hz 
sampling rate, each 10 second trial produces 2,500 samples per channel.  Overall, there are 16 different EEG files.  
Each EEG signal is segmented with a half-second window, i.e. for a length of 125 points giving 20 patterns for each 
file with a total of 320 patterns.  For all the experiments, 50% of available patterns are used for training, while the 
rest 50% are for testing.  The patterns for each data set are chosen randomly at the beginning and are fixed for all the 
experiments.  Three different experiments are run, each with different Fuzzy ARTa vigilance parameter, ρa values of 
0.0, 0.5 and 0.9 for all the cases. 
 
First, the different model order selection criteria like AIC, and FPE are used to give the appropriate order of the 
model. Next, Burg’s algorithm is used (throughout the experiments) to derive the AR coefficients.  After this, we 
derive the PSD values in the range of 0-50 Hz per channel and using these spectral values (the PSD values for all the 
6 channels are concanated into one vector), we train a FA network and use it to predict the cognitive tasks.  The 
entire process is then repeated for the case with a fixed 6th order AR model.  Fig. 3 illustrates this process. 

 

AR coefficients obtained using
Burg's algorithm with one of the
statistical model order criteria

and PSD generated (from
ARSA method)

Fuzzy
ARTMAP
training

AR coefficients obtained using
Burg's algorithm with one of the
statistical model order criterion
used for FA training and PSD
generated for unused patterns

Fuzzy
ARTMAP
testing

Different
cognitive

tasks
predicted

 
Fig. 3: Fuzzy ARTMAP training and testing 

 
Table 1 shows the FA prediction performance for subjects 1, 2, 3 and all 3 subjects combined for the 3 cases of 
order selection criteria.  These results are for classification of two different mental tasks i.e. computing arithmetic 
and geometric figure rotation for combined two sessions.  Three different experiments with Fuzzy ARTa vigilance 
parameter, ρa values of 0.0, 0.5 and 0.9 are conducted. 
 

Table 1: Results of FA prediction percentage during experimental study 
 

Statistical 
criteria 

ρρ a 

 
Subject 

1 
Subject 

2 
Subject 

3 
All 3 

subjects  

  0.0 79.17 70.83 95.83 54.17 
AIC 0.5 75.00 70.83 95.83 54.17 

  0.9 79.17 75.00 87.50 66.67 

  0.0 79.17 75.00 91.67 56.94 
FPE 0.5 91.67 75.00 91.67 56.94 

  0.9 83.33 75.00 83.33 72.22 

  0.0 79.17 83.33 91.67 62.50 
6th order  0.5 83.33 83.33 87.50 62.50 

  0.9 100.00 

 

83.33 

 

91.67 

 

72.22 
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Table 2 shows average performance of FA for the 3 different vigilance parameter values.  From these two tables, we 
can see that for most cases, FA can predict the cognitive tasks to a good accuracy using ARSA method.  As far as 
the statistical model order criteria are concerned, it is difficult to conclude which criterion is best since the 
performance varies for different subjects.  A similar conclusion can be arrived for the performance with different ρa 

values.  However, we are able to conclude that subject 3 performs better than the other two subjects in most of the 
cases. 

 
Table 2: Average results of FA prediction percentage during experimental study 

 

  
Model Order 

Criteria FA Performance 
  AIC 77.78 

Subject 1  FPE 84.72 

  6th order 87.5 
      
  AIC 72.22 

 Subject 2 FPE 75 
  6th order 83.33 
      
  AIC 93.05 

 Subject 3 FPE 88.89 

  6th order 90.28 
      

All 3 subjects  AIC 58.34 

combined FPE 62.03 

  6th order 65.74 
 
 
6.0 CONCLUSION 
 
We have proposed a method to predict cognitive tasks performed by the human brain using spectral analysis of EEG 
signals.  The EEG signals are analysed using autoregressive spectral analysis, a type of modern parametric spectral 
analysis method, which comparatively yield better power spectrum over the classical Fourier methods.  Power 
spectral densities of the EEG signals are used to train a Fuzzy ARTMAP network to classify these signals into the 
respective cognitive tasks.  The average results of 72.22% to 93.05% for each subject from our experimental study 
show that it is highly possible to predict cognitive tasks based on EEG signals.  This can be used as a mode of 
communication or wheelchair control for paralysed patients and also in EEG biofeedback systems. 
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