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ABSTRACT

In this paper, we are proposng a method to predict cognitive tasks performed by the human brain using spectral
analyss of dectrical signals extracted from the scalp of the brain. These dectrical sgnals, which are generated by
the synapses and neurons in the brain, are also known as Electroencephalogram (EEG) dgnals. The EEG sgnals
are analysed using autoregressve spectral analyss, a type of modern parametric spectral analyss method, which
comparativdy yield better power spectrum over the clasical Fourier methods. Power spectral dendties of the EEG
sgnals are used to train a Fuzzy ARTMAP network to predict the respective cognitive tasks. In our experimental
study, we have analysed 3 subjects performing 2 different cognitive tasks and our average results of 72.22% to
93.05% for each subject show that it is highly possible to predict cognitive tasks based on EEG sgnals. This can be
used as a mode of communication or wheechair control for paralysed patients and also in EEG biofeedback

systems.

Kepwords EEG, Autoregressive spectral analysis, Cognitive task, Fuzzy ARTMAP, Burg'salgorithm

1.0 INTRODUCTION

Although the spontaneous eectrica activity of the bran or the dectroencephdogran (EEG) was discovered in
rabbits and monkeys more than a century ago by Caton in 1875 [7] and the first report concerning the human EEG
appeared more than 60 years ago [8], much remains to be darified about the nature and the origin of the EEG.
Nonetheless, very soon after its discovery in humans, EEG became an important diagnostic tool and it has remained
s0. From 1924 to 1938, Berger [8] lad the groundwork of our present applications of EEG. Since then, a gradud
redisation of EEG in the application of contrdled information has led to significant corrdations with regard to brain
functioning in certain mental and behaviourad dates. However, in EEG, the revolution of computerisation has not
tuned out to be far resching and enduring as the revolution in neuro-imaging brought about by computerised axia
tomography (CAT), magnetic resonance imaging (MRI), and positron emisson tomography (PET). And yet, as a
non-nvasive clinical tool for evauaing brain function, the EEG continues to be very useful. Furthermore, spectra
andyss of EEG sgnas has evolved over the past three decades with much of the effort directed towards a better
understanding of the functioning of the brain.

These EEG signds are composed of oscillating potentids derived from the scdp surface and originaing from the
dectricd activity of the brain; specificdly EEG sgnds are generated by neurons and synapses in different areas of
the brain. The potentids may vary in frequency from less than 1 to 50 Hz and achieve amplitudes up to50 nV.
However, there is a concentration of frequency ranges in norma individuds. This varies from 8 to 13 Hz, which is
known as alpha rhythm, beta potentials are those higher than 13 Hz, theta rhythms are a 47 Hz and the dow ddta
rhythms range between 0.5 and 3.5 Hz.

In this paper, we are proposing a method to predict cognitive tasks performed by the human brain using spectra
andyss of these EEG dgnas. A bendfit of this sysem is as a means of communicaion between paralysed patients
and ther externd environment i.e as an interface for use by people with severe phydca disabilities. As the
technology advances, it is envisaged that this technique could be used by anyone for rudimentary user-interface
actions, like popping up windows and making menu choices These systems can dso be used in whedchar
movement control for paralysed patientsin addition to providing useful information in EEG biofeedback systems.
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Digitd spectrd andysds usng linear parametric methods like autoregressve (AR) models have proven to be
superior to classicd Fourier transform techniques like Discrete Fourier Transform (DFT) using the periodogram
approach. This is due to the ability of Autoregressive Spectrd Anadysis (ARSA) modeds to handle short segments of
data while giving better frequency resolution and smoother power spectra than Fourier methods.  Furthermore, AR
methods need only one or more cycles of dnusoidd-type activity to be present in the segment to produce good
spectral pesks and they also provide the ability to observe smal shifts in peak frequencies, which are not esesly
observed with periodogram derived spectra[9].

In this study, EEG signds from 3 subjects are extracted while performing 2 different cognitive tasks. The signals
ae sygmented and two different datisticd model order criteria are applied namey Akake Information Criterion
(AIC) and Find Prediction Error (FPE) before the AR coefficients are obtained. The AR modd coefficients can be
edimated by solving a st of linear equations using the YuleWadker method or solving recursively for higher orders
usng LevinsonDurbin [2] or Burg method [3]. Burg's method is used in this paper since it minimises not only
forward prediction error but aso backward prediction eror unlike Levinson-Durbin (LD), which minimises only the
forward prediction error.  This method aso derives AR coefficients directly from the data where as LD method
requires the use of autocorrdaion (AC) method, which is erroneous for small length of data Next, ARSA method
is used to generate power spectral densities (PSD) of these EEG segments. These PSD values are then used to train
a Fuzzy ARTMAP (FA) neura network to predict the cognitive tasks for the test EEG patterns. FA network is used
instead of dher popular neurd networks since it has low training time and gives good accuracy in addition to being
plastic while maintaining stability.

Section 2 gives an introduction to EEG signdls.  In section 3, we give a description of the ARSA method including
the datistical mode order criteria and AR coefficient esimation usng Burg's agorithm.  Section 4 discusses Fuzzy
ARTMAP while Section 5 treats the experimenta study and results. The paper is concluded in Section 6.

20 EEGSGNALS

Electroencephdogram (EEG), is a measure of brain activity. The word comes from the Latin ‘encephdon’, which
means ‘brain’. EEG is measured usng dectrodes (smal metd pieces) attached to the skull surface Nerve cdls in
the brain condantly creste very smdl dectricd sgnas. The actud generator of these potentids is thought to be
neurons in the cortex (the outer part of the brain). The dectrode is however large in comparison to the neurons, o
wha can be seen on an EEG dgnd is a summation of the activity of thousands or millions of neurons. The EEG
mechine contains amplifiers, which amplifies these branwaves dgnds, large enough so tha we can see them. The
eectricad dgnas are picked up by eectrodes glued to the scap, and travel to the amplifiers of the EEG machine and
then are either written out on paper or saved on the hard drive of a computer and displayed on the computer's
monitor or used in computerised signa anadysis.

21  Method of Deriving EEG Signals (M ontages)

There are three traditiond methods of deriving dectricd Sgnds from an dectrode aray. These montages are
commonly described as hipolar, unipolar (or monopolar) and average reference methods.  However, it must be
remembered that dl derivations are essentidly bipolar in the sense that the detecting device must be connected
between two points and will indicate the potentid difference between them. The average reference method is not
very popular and will not be discussed further.

In the bipolar method, each channd is connected between two eectrodes both of which are likely to be affected by
appreciable EEG potentids i.e. active areas of the brain. Monopolar method however, uses two eectrodes — one
connected to the EEG active area and another from a reference of zero potentiad (typicaly placed at the earlobe). In
certain literatures, we find the term common reference is used. It actudly denotes monopolar readings but with al
the reference channds located on a common dectrode.  This common reference method is employed in this paper
sinceit reduces the number of electrodes required.

Note that the amplifier looks at the two eectrode signas coming into it and cancels out dgnds tha are the same.
So, the sgnd that is seen on the paper or on the computer screen is actudly the difference between the eectrica
activities picked up by the two different eectrodes Fig. 1 shows an example of EEG waveform obtained in the
experimental study of this paper.
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Fg. 1: An extracted EEG ssgment

22 Electrode Placement

Electrode placement is dso an important topic in EEG anadlyss. The placement of the eectrodes is important
because the closer the éectrodes are to each other, the less are the differences in their brainwaves. Therefore,  the
dectrodes are too close, the EEG will look like a draight line instead of showing the brainwaves. However, this
problem does not aise for monopolar readings using common reference scheme since the reference channd is of
zero potential.  In this ressarch, we have used the 10-20 internationdl method [10] to place the dectrodes, which
condgts of 19 active channes plus 2 reference channeds. There is aso the 64-channd EEG dectrode placement
usng Standard Electrode Postion Nomenclature, American  Electroencephaographic  Association but this method
was opted out due to high number of channels, which is unnecessary for the application discussed in this paper. Fig.
2 shows the 10-20 internationa system of EEG eectrode placement. In this system, we have used 6 active channds

plus 2 reference channels (refer to Section 5).
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Fg. 2: 10 —20 Internationd system for EEG dectrode placement

23 Artifacts

Ancther, not dways wanted, source of these potentials is muscular activity such as eye and head movements, aso
known as artifacts. However, eye movements can be filtered using additional electrodes placed aove and below the
eye. This process of detecting eye movements is known as eectroculography (EOG). When the reading from these
eectrodes show high potentids in less than 100 ms, then an eye movement has occurred and the EEG sgnds from
the brain for that particular period of time should be removed from the anadysis. Muscle artifacts from other parts of
the body i.e. Electromyogram (EMG) can be removed using digitd filtering in the frequency domain. This is since
most norma EEG dgnas do not exceed 50 Hz. Therefore, a low pass filter designed to cut off a this frequency
would filter out these unwanted higher frequency spectrum.

Electrica interferences adso do pose a treat to corrupt EEG signds. But these are easily filtered out since they show

up with a pesk according to their power digtribution frequency. For example, in Maaysa, the frequency of the
eectrical power isabout 50 Hz and frequency peaks closeto this vaue can befiltered out.
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30 SPECTRAL ANALYSSOF EEG SGNALS

Interpretations of EEG signals visudly often require expert medicd or technicd professonds. To overcome this
problem and to automate EEG andysis, spectrd andyses of EEG sgnas have been proposed [9, 13]. This is since
an EEG dgnd can be regarded as a time sies, which can be andysed mathemaicaly. Usudly, this andyss
cannot be applied exactly because the necessary theoretical conditions cannot be met in practice  However, with
some minor modifications and assumptions, these methods provide a useful approach to studying EEG signds. This
issmilar to the andlysis of signalsin other branches of science like seismography and in the study of ocean waves.

3.1 Theoretical Bassof EEG Frequency Analysis

Frequency andysis is the process of separating a signd into its frequency components. Each frequency component
in the spectrum has an asxociated phase, which can be expressed as a function of frequency; the result is cdled a
phase spectrum. Therefore, to describe a sgna uniquely, both an amplitude spectrum and a phase spectrum are
required. Often, the amplitude vaues are squared and the result of anadyss is caled a power spectrum. The sum of
the vaues of the power spectrum is equa to the total power or mean squared value of the origina signa (Parseva’s
theorem). This is why power or variance measures often used instead of amplitude measures in signal andysis since
the sum of component amplitudesis not equa to the total amplitude because of phase effects.

Using frequency analysis, the proportion of a signd attributable to a particular frequency or range of frequencies can
therefore be messured.  In our case, the power spectrum is scaled so that the area under the spectrum is equal to the
mean squared value of the origind signd and the spectrum is caled a power densty spectrum or power spectrd
density (PSD).

32  Fourier Analysis vs Parametric Spedral Analysis

Frequency andysis using Fourier methods are popular. DFT or the computationally efficient FFT with periodogram
method are commonly applied for EEG spectrd anadyss.  However, there are numerous disadvantages with these
non-parametric methods as compared to parametric spectral methods like AR method.  Parametric methods aso
give smoother spectrums as compared to non-parametric methods.  Although usng data windows can smooth
Fourier spectrum (which is the Blackman-Tukey method), it must ke noted however that this does distort the true
spectrum due to side lobe leskages.

Fourier analysis requires multiple periods for the particular spectra pesk to gppear unlike the ARSA using Burg's
method, which requires the data segment to contain only a single period to produce a pronounced pesk [9].

ARSA methods dso give better frequency resolution while avoiding picket fence and scaloping loss effects faced
by Fourier methods. DFT condsts of harmonic amplitude and phase components regularly spaced in frequency.
The spacing of the spectra lines depends on the number of data samples, decreasing with the number of data
Therefore, we will not be able to estimate accurately the frequency component of the signd in between these two
adjacent harmonic frequency components. This problem is better known as picket fence effects. The solution to
this problem lies in augmenting zeros to the data  However, this results in scdloping loss, which is designed to
represent the maximum reduction in processing gain, which occurs mid-way between the harmonicdly related
frequencies.

33  Autoregressive Spectral Analysis

A red valued, zero mean, stationary, non-deterministic, autoregressive process of order p isgiven by

x(n) = - I(ailakx(n - K +en), @

where p is the modd order, x(n) is the data of the signad a sampled point n, g are the red vaued AR coefficients
and e(n) represents the error term independent of past samples.  In some literatures, the error term is dso known as
resdua, random shock or innovation. The term autoregressive implies that the process x(n) is seen to be regressd

1 Parametric models like AR require only a small set of parameters to fit the model. However, non-parametric models like
Fourier spectrum require infinite number of parameters to specify the process.
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upon previous samples of itself. The error term is assumed to be a zero mean white noise with finite variance, Sé .

In gpplications, the values of g and sg have to be edimated from finite samples of data x(1), X(2), X(3), ...ceev sy

X(N).

Many different techniques have been proposed to estimate g, each with its own merits and demerits. However, the
most common method is to use the autocorrdation technique of solving the Yule-Waker equdions [2]. We can
solve the Yule-Waker equations directly using conventiona linear equation solutions like Gaussan eiminaion but
a shortcoming of this gpproach lies in its huge computationd time. Thus, recursive agorithms have been developed
which are based on the concept of etimating the parameters of a mode of order p from the parameters of a modd of
order p-1. Some of these methods are like Burg' s dgorithm [3] and Levinson-Durbin (LD) dgorithm [2].

Burg's method is more accurate than LD since it uses the data points directly unlike the latter method, which relies
on the edimation of the autocorrelation function, which is generdly erroneous for smal data segments. The earlig
method aso uses more data points smultaneoudy by minimizing not only a forward eror (as in the Levinson
Durbin case) but aso abackward error. This agorithm will be discussed |ater.

34 Statistical Model Order Selection Methods

Before an AR process could be used, there is a prerequisite of having to know the order of the model. Most order

section criteria are transformations of the mean squared aror, sg which is computed as a function of the order

in modd edimation. These techniques employ a multiplication of this error and a cost function, which increases
monotonicaly with order p. Methods pioneered by Akake [1] are popular and two model order sdection criteria
devdoped by him i.e. AIC and FPE are based upon concepts in mathematica datistics. FPE method gives the
mode order, which minimises the function below:

_ .2, N+p
FPE(p) =S, (P) . @

where p is the modd order, N is the number of data points, §§( p) is the edimated error variance for the modd. If
the mean vaue of the data has been subtracted, then the unbiased estimate of this error varianceis given as[12]:

P)—— ©)
p

and the FPE isnow given by:

N+p+1

N-p-1 @

_ .2
FPE(P) =S (P)

The fractiona portion of FPE increases with p and as such represent the inaccuracies in estimating the AR
parameters.  The principle behind the FPE criterion is that the unbiased estimate of the error variance is multiplied
by the factor:

1+ p/N, ©)

where p is the number of parameters to be estimated and N is the number of points observed. This factor alows for
the increase in the error variance when the estimated coefficients are used to make predictions on new, independent
data.

2 In this paper, mean squared error is used interchangesbly with error variance. This is since the error is assumed to be white
noise where the mean valueis zero.
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Akake then extended this model sdection criterion to any maximum likdihood dStuation. This other criterion is
cdled AIC and isgiven by:

AIC(K)=-2In(maximumlikelihood) + 2K, ®

where k is the number of parameters edtimated. Using this method, the order of the mode is sdectal which
minimises the following function:

AIC(p) =N Ins2(p)+2p. )

The term 2p represents the pendty for sdecting higher orders. The two criteria are asymptoticdly equivalent and in
the limit of large N, FPE and AIC will predict the same optimd order.

35 Burg'sMethod

Burg's method is common is AR literatures and as such, well only discuss briefly the agorithm behind this method.
The dgorithm is as follows:

1. Calculateinitial values
. 2 1N-1 2 . " .
Error variance, Sg (0) = — % [X(n)]© wherex(n) is then™ sampled data with mean value
N
subtracted
Forward error, e, (0) = x(n)

Backward error, bn- 1(0) =x(n- 1

2. Calculatereflection coefficient and error variance

N-1
ngmbn-l(m' ey (m- 1)
N-1 »

o 2
& fen(m- D)+ by 4 (m- 1]

Reflection coefficient, Py, = - 2

3. Update Error and AR coefficients
ak(m) = ak(m- 1)+pmamk(m- Dim>1
am(m) =Py m=1

Forward Error Update, e, (m) = e;(m- 1) + pmbn_l(m -1

AR coefficients,

Backward Error Update, b, (m) = by,_1(m- 1) +pmen (M- 1)

4. Repeat geps 2 and 3 (with mincremented by one) until the selected modd order pis reached.
Proofs and details of thisagorithm can befound in [3].
36  Autoregressive Spectral (ARSA) Egtimation

After sdecting the order of the modd by the any one of the discussed criterion, we can proceed with the estimation
of the AR coefficients usng Burg's dgorithm. These coefficients are then used to obtain he power spectrd density
(PSD) vaues by using the equation:

S (f)
(H=—p e-iszT 2’ ®
| & ae PN
k=0
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where Sf) represents the power spectral density function, T is the sampling period and S.(f) represents the power
spectrum of the error sequence.  Since the term S.(f) applies to the errors or resduas which are in theory white, the
resulting power spectrum should be flaa and therefore S(f) should be a constant independent of the frequency.
Idedlly, the vaue of this constant (noting that the mean of the residuas are zero) will be directly proportiona to the
vaiance of the redduds Hence, the find expresson for the conventiond AR gpectrd estimate is obtained by

replacing S(f) with sxg(p)T where s:g(p) is the unbiased edimated variance of the resduas and the term T is
included so that the true power of the signal will be represented digitaly. Thefina PSD equation isgiven by:

22
spT
-i2gkT 2 ©)
||<‘é§oake o

(f) =

40  FUZZY ARTMAP

This section introduces Fuzzy ARTMAP (FA) network. Fuzzy ARTMAP belongs to the ART family. There are
severd variaions of these ART neural networks, namely ART1, ART2, ART3, Fuzzy ART, Disributed ARTMAP,
Fuson ART, Fuzzy ARTMAP and ART-EMAP. Thee sysems were initidly developed by Carpenter and
Grossberg [4].

ARTMAP is a class of neura network that performs incremental supervised learning of recognition categories.
Earlier Adaptive Resonance Theory models like ART1 and ART2 consisted of unsupervised learning systems.  In
this paper, a more generd ARTMAP system known as Fuzzy ARTMAP is used. This system learns to classify
inputs by using fuzzy set features i.e. the input features are from O to 1. This is accomplished by replacing the
ART1 module of the binary ARTMAP system with Fuzzy ART module.

FA incorporates fuzzy set theory in its computation and as such it is able to learn stable responses to either analog or
binary valued input patterns. It consists of two modules (Fuzzy ART, and Inter ART) that create stable recognition
categories in response to sequence of input patterns. During supervised learning, Fuzzy ARTa receives a stream of
input festures representing the pattern and Inter ART module maps the output of Fuzzy ART a to the respective target
of the patern. It is actudly an associative controller that crestes a minimd linkage of recognition categories
between the Fuzzy ART, module and target classes to meet a certain accuracy criteria This is accomplished by
redizing a learning rule that minimizes predictive error and maximizes predictive generdization. It works by
increesing the vigilance parameter r, of Fuzzy ARTa by a minima amount needed to correct a misclassfication or
predictive error.

Parameter r, cdibrates the minimum confidence that Fuzzy ARTa must have in a recognition category, or
hypothesis that is activated by an input vector in order for Fuzzy ART. to accept that category, rather than search for
a better one through an automaticaly controlled process of hypothesis testing. Lower vaues of r, endde larger
caegories to form and lead to a broader generdization and higher code compresson. A predictive falure increases
the minima confidence r, by the least amount needed to trigger hypothess testing a Fuzzy ARTa using a
mechanism cdled match tracking. Match tracking sacrifices the minimum amount of generdization necessary to
correct the predictive error. Match tracking leads to an increase in the confidence criterion just enough to trigger
hypothesis testing which leads to a new sdlection of Fuzzy ART, category. This new cluster is better able to predict
the correct target class as compared to the cluster before match tracking. Further details of this method can be found
in[4,5,6].

50 EXPERIMENTAL STUDY

In this paper, we study the ability of the FA network usng ARSA method to predict two types of cognitive tasks.

The peformance of different types of order sdection criteria for ARSA modds to represent EEG signds are aso
experimanted. These ddtidica criteria are AIC and FPE.  In addition, an experiment is also conducted with a fixed
6" order model since Keirn and Aunon [13] have usad it in their experiments.

The subjects are seated in an Industrid Acoustics Company sound controlled booth with dim lighting and noisdess
fans for ventilation. An Electro-Cap elagtic eectrode cap is used to record EEG signals from postions C3, C4, P3,
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P4, O1 and O2, defined by the 10-20 system of eectrode placement. The eectrodes are connected through a bank
of amplifiers and band-pass filtered from 0.1-100 Hz. The data is sampled a 250 Hz with a 12-hit A/D converter
mounted on a computer.

For this paper, the data from three subjects performing two different mental tasks are anadlysed. hese tasks were
chosen by Keirn and Aunon to invoke hemispheric brainwave asymmetry [13]. Thesetasksare:

Math task, for which the subjects were given nontriviad multiplication problems, such as 12 times 18, and
were asked to solve them without vocalizing or making any other physical movements;

Geometric figure rotation, for which the subjects were asked to visudize a paticular 3D block figure
being rotated about an axis.

Data was recorded for 10 seconds during esch task and each task was repested for two sessions. With a 250 Hz
sampling rate, each 10 second trid produces 2,500 samples per channd. Overdl, there are 16 different EEG files.
Each EEG dgnd is ssgmented with a haf-second window, i.e. for a length of 125 points giving 20 patterns br each
file with a totd of 320 paterns. For al the experiments, 50% of available patterns are used for training, while the
rest 50% are for testing. The patterns for each data set are chosen randomly & the beginning and are fixed for dl the
experiments.  Three different experiments are run, each with different Fuzzy ART, vigilance parameter, r, values of
0.0, 0.5 and 0.9 for dl the cases.

Firgt, the different model order sdlection criteria like AIC, and FPE are used to give the appropriate order of the
modd. Next, Burg's dgorithm is used (throughout the experiments) to derive the AR coefficients  After this we
derive the PSD values in the range of 050 Hz per channel and using these spectral vaues (the PSD values for dl the
6 channds are concanated into one vector), we train a FA network and use it to predict the cognitive tasks. The
entire process is then repeated for the case with afixed 6" order AR model. Fig. 3illustrates this process.

AR coefficients obtained using AR coefficients obtained usin Different
Burg's algorithm with one of the Fuzzy Burg's algorithm with one of thg Fuzzy cognitive
statistical model order criterig ARTMAP statistical model order criterior] | ARTMAP | |
] L 1 L ) tasks
and PSD generated (from training used for FA training and PSD testing predicted
ARSA method) generated for unused patterns

Fig. 3: Fuzzy ARTMAP training and testing

Table 1 shows the FA prediction performance for subjects 1, 2, 3 and al 3 subjects combined for the 3 cases of
order sdection criteria These results are for classfication of two different menta tasks i.e. computing arithmetic
and geometric figure rotation for combined two sessons. Three different experiments with Fuzzy ARTa vigilance
parameter, r , vaues of 0.0, 0.5 and 0.9 are conducted.

Table 1: Results of FA prediction percentage during experimenta study

Statistical ra Subject Subject Subj ect All 3
criteria 1 2 3 subjects

00 79.17 70.83 95.83 54.17

AlC 05 75.00 70.83 95.83 54.17

09 79.17 75.00 87.50 66.67

00 79.17 75.00 91.67 56.94

FPE 05 91.67 75.00 91.67 56.94

09 83.33 75.00 83.33 72.22

00 79.17 83.33 91.67 62.50

6" order 05 83.33 83.33 87.50 62.50

09 100.00 83.33 91.67 72.22
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Table 2 shows average performance of FA for the 3 different vigilance parameter vdues. From these two tables, we
can see thet for most cases, FA can predict the cognitive tasks to a good accurecy usng ARSA method. As far as
the datisticd model order criteria are concerned, it is difficult to conclude which criterion is best since the
performance varies for different subjeds. A similar concluson can be arived for the performance with different r,
vdues. However, we are able to conclude that subject 3 performs better than the other two subjects in most of the
cass.

Table 2: Average results of FA prediction percentage during experimentd study

Modd Order
Criteria FA Performance
AIC 77.78
Subject 1 FPE 84.72
6" order 875
AlC 72.22
Subject 2 FPE 75
6" order 83.33
AlC 93.05
Subject 3 FPE 88.89
6" order 90.28
All 3subjects AlC 58.34
combined FPE 62.03
6" order 65.74

60 CONCLUSON

We have proposed a method to predict cognitive tasks performed by the human brain usng spectrd anayss of EEG
sgnds. The EEG dgnds are andysed usng autoregressve spectra andysis, a type of modern parametric spectral
andyss method, which comparatively yield better power spectrum over the classcad Fourier methods.  Power
spectral dendities of the EEG signals are used to train a Fuzzy ARTMAP network to classify these signds into the
respective cognitive tasks. The average results of 72.22% to 93.05% for each subject from our experimentd sudy
show that it is highly possble to predict cognitive tasks based on EEG dgnads. This can be used as a mode of
communication or wheelchair control for paralysed patients and also in EEG hiofeedback systems.
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