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ABSTRACT 
 
This report presents a method to specify a set of controllers for a Robotics production cell using the Duration 
Calculus.  The case study is adopted from a report by Claus Leverentz on specifying a real metal processing plant in 
Karlsruhe using other formal and semi-formal methods.  Our contribution to this case study aims at illustrating the 
methodology associated with the concept of shared state model and events for describing and specifying 
synchronised controllers. We use the notion of state to describe and model the sensors and actuators.  Next, we 
apply the leads-to operator to list the assumptions which are aspects of the behaviour of the plant that cannot be 
controlled by the controllers.  We then show how one can specify each controller using leads-to and state notation 
as shared variables for synchronising the interaction of the controllers.  Specification are structured modularly 
according to the physical structure of the system. 
 
Keyword: Formal Method, Duration Calculus, Concurrent Controllers, and Production Cell  
 
 
1.0  INTRODUCTION 
 
Duration Calculus (abbreviated by DC) is one of the formal specification languages used to specify a real-time or a 
reactive system such as production cell.  The DC represents a logical approach for formal design of real-time 
systems, where real numbers are used to model time, and Boolean-valued functions over time are used to model 
states and events of the real-time system [1].  Since its introduction, DC has been applied to many case studies and it 
has been extended in several directions. 
 
The case study, “Control Software for an Industrial Production Cell”, is taken from [4] which reports a study by 
Claus Leverentz.  The study was done as one of the two major case studies of the KorSo project [6].  Both case 
studies have common primary objectives to show the usefulness of formal methods for critical software systems and 
to prove their applicability to the real-world examples.  The “Production Cell” case study focuses on comparing 
different approaches of formal and semi-formal software construction methods developed inside and outside the 
KorSo project, and checking their suitability for the class of problems represented by the production cell.  This case 
study has been specified using different approaches namely ESTEREL, LUSTRE, StateCharts, SDL, KIV, 
Tatzelvum, RAISE, Deductive Synthesis, FOCUS, SPECTRUM, TROLL light, Eiffel and Modula-3. 
 
We take another approach using the notion of state and leads-to operator of Duration Calculus to specify this system 
which consists of many components or controllers.  We also adopt a shared state in support of synchronisation. 
 
We proceed as follows: in section two, we briefly present the basic formalism of Duration Calculus.  Section three 
gives the overall description of Industrial Production Cell.  Section four shows the description of each component of 
the plant and how we use the notion of state to model the input (i.e. the sensor) and the output (i.e. the actuators) of 
the components.  The aspect of the behaviour of the plant that cannot be controlled by the controllers are listed as 
assumptions in section five.  The specification of each controller appears in section six and we finish the paper with 
some conclusions in section seven. 
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2.0  BASIC FORMALISM OF DURATION CALCULUS  
 
The Duration Calculus (abbreviated DC) is based on Interval Temporal Logic [1].  The notion state is used to model 
the behaviour of real-time systems.  A Boolean State Model  of a real-time system is a set of Boolean valued 
functions over time: Time � {0,1}, where Time is the set of the real numbers.  Each Boolean valued function, is 
also called a Boolean state (or simply a state) of the system, is a characteristic function of a specific aspect  of the 
system behaviour, and the whole set of Boolean valued functions characterise all the concerned aspects of the 
behaviour. 
 
The notion of  state duration is an essential measurement of the behaviour of real-time systems.  The duration of a 
Boolean state over a time interval is the accumulated time in which the state is present in the interval.  Let P å Time 
� {0,1} be a Boolean state and [b,e ] an interval, i.e. b,e  å Time and e � b.  Mathematically, the duration of state P 

over [b,e ] equals the integral  ∫ e
b dttP )( , where P is a function from time to Booleans (represented by {0,1}).  �P 

gives the duration of the interval over which P holds.  Let true denotes the state function which maps any time point 
to 1.  The length of an interval can be defined as ∫= trueˆl . 
 
A Boolean state P holds almost everywhere over a non-empty interval can be defined as: 
 

  ( ) 0ˆ >∧∫ == llPP  (1) 

 
The concept of an event [2], derived two operators  followed-by and leads-to which are useful in specifications.  The 
event is a discontinuity of a state.  The reader may refer to [2]  for more details.  We only present the leads-to 
notation since we will be using it throughout our paper. 
 

Leads -to : For a given formula D and state assertion  P and positive real number t, the construct  PtD →             

(D leads to P within t) is  defined by  
 

    ))((ˆ PtDPtD
∩

=∧¬◊=→ l  
(2)  

 
This property states that it is not the case that the observation starts with D on holding for t  time unit followed by 

P¬  for a non-point subinterval. 
 
 
3.0  OVERALL DESCRIPTION OF INDUSTRIAL PRODUCTION CELL 
 
This section is devoted to the development of an automation software to control a typical industrial production cell 
used in a metal processing factory.  The examp le was taken from a real metal processing plant in Karlsruhe [4]. 
 
The production cell consists of two conveyor belts, a positioning table (or elevation-table), a two-armed robot and a 
press.  Fig. 1 shows a conceptual view of the production cell. 
 
The production cell serves to process metal blanks which are conveyed to a press by a feed-belt.  A robot takes each 
blank from the feed-belt and places it into the press.  The robot arm then withdraws from the press, while the press 
processes the metal blank and opens again.  Finally, the robot takes the forged metal plate out of the press and puts it 
on a deposit-belt. 
 
This procedure is made more complicated by adding further mechanisms.  To optimise the utilisation of the press, 
the robot is fitted with two arms - thus making it possible for the first arm to pick up a blank while the press is 
forging another plate.  The robot arms are placed on different horizontal planes, and they are not vertically mobile.  
This explains why an elevating rotary table has to be intercalated between the feed-belt and the robot.  Another 
consequence of the fact that the two robot arms are at different levels is that the press has not only two but three 
states, i.e. open for unloading by the lower arm, open for loading by the upper arm, and closed for pressing.  
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The general sequences (from the perspectives of a metal plate) are as follows: 
 

1. The feed-belt conveys the metal plate to the elevating rotary table. 
2. The elevating rotary table is moved to a position adequate for the unloading by the first robot arm. 
3. The first robot arm picks up the metal plate. 
4. The robot rotates counter clockwise so that the arm 1 points to the open press, places the metal plate into it 

and then withdraws from the press. 
5. The press forges the metal blank and opens again. 
6. The robot retrieves the metal plate with its second arm, rotate further and unloads the plate on the deposit-

belt. 
7. The deposit-belt transports the plate to the packing operator. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Conceptual View of the Production Cell 
 
To tackle this problem, we apply the divide-and-conquer method by dealing with each component of the cell 
individually, i.e. the Feed-Belt (FB), the elevation-table (ET), the two-arms-robot (R), the press (P) and the Deposit-
Belt (DP). 
 
Each component  is controlled by its own controller.  All controllers run concurrently and they are synchronised 
using shared state sensors.  There are numbers of sensors and actuators involved in controlling the cell which we 
will mention in subsequent sections. 
 
 
4.0  MODELING THE PLANT AND ENVIRONMENT 
 
This phase focuses on a description of the plant.  In this phase, we will produce a state model for the input and 
output. 
 
4.1  Feed-Belt 
 
The task of the feed-belt is to transport metal blanks to the elevating rotary table.  The belt is powered by an electric 
motor,  which can be started up or stopped off by the control program.  A photo-electric cell is installed at the end of 
the belt; which reports whether a blank has entered or left the final part of the belt.  We can specify the sensor signal 
using the notation of duration calculus as follows:  
 

 
MendFB  : Time →{0,1}, where 

 
(3) 





=
Belt    -Feed of end at the Metal - 1

Belt-Feed of end at the metal No - 0
)(tMendFB  

 
 

(4) 
 

Robot  

Press 

Deposit-Belt 

Elevation Table 

Feed-Belt 

Arm 2 

Arm 1 
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This state variable is set to 1 if the metal is at the end of the belt and to 0 otherwise.  Whereas the actuator signal 
which is used to control the movement of the belt can be modelled as follows: 
 

moveFB  : Time →{0,1}, where 
 

 
(5) 





=
motor    belt -feed Start the - 1
motor   belt -feed  theStop - 0

)( tmoveFB  
 
 

(6) 
 

In the following section, the notation statename : Time � { 0,1 } representing the Boolean function will be omitted 
to save spaces. 
 
4.2  Elevation-Table 
 
The task of the elevating rotary table is to rotate the blanks by about 45 degrees and to lift them to a level where they 
can be picked up by the first robot arm.  The vertical movement is necessary because the robot arm is located at a 
different level than the feed-belt and because it cannot perform vertical translations.  The rotation of the table is also 
required because the arm’s gripper is not rotary, and is therefore, unable to place the metal plates into the press in a 
straight position by itself.  Fig. 2 shows the elevating rotary table. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Elevation Rotary Table 
 
There are two possible positions for the elevating rotary table.  One is the rotation position and the second is the 
vertical position.  How far the table rotates can be detected by the potentiometer as a continuous value.  We can 
model this as  
 

ETrotate : Time →  R (7) 
 
where R is the rotation in degrees from the feed-belt. 
 
The vertical position can be detected by two switches.  One informs whether it is in lower position and the second 
informs whether it is in upper position.  It can be modelled by two Boolean state variables ETlowPos and ETupPos 
defined as follows  
 





=
        position  lower  In the - 1

 position  lower  in theNot  - 0
)(tETlowPos  

 
(8) 

  





=
        position  upper   In the - 1

 position  upper  in theNot  - 0
)( tETupPos  

 
(9) 

 

Top View Front View 

Electric Motor Electric 
Motor 
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Our only concern at this stage is the two positions.  One is when the Elevation-Table is at 0o with the feed-belt (i.e. 
in line with the feed-belt) and it is at the low position.  The second position is when the Elevation-Table is at 45o 
with the feed-belt and it is at the upper position.  Therefore, we can have a composite Boolean state as follows: 
 







=

=
=

  ETlowPos and o0  ETrotate - 1

 ETupPos and o45  ETrotate - 0
)(tETPos  

 
(10) 

 
Fig. 3 shows these two positions.  Fig. 3 (a) shows side view and top view when the ETPos value is 1.  The table is 
at the lower position and in-line with the feed-belt.  Fig. 3 (b) shows when the elevation-table is at the position from 
which the robot can unload the metal, i.e. ETPos = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Elevation-Table Position 

 
Another sensor indicates whether there is any metal on the elevation-table.  This can be described by the state 
model: 
 





=
tableelevation  on thenot  is Metal - 1
       tableelevation  on the is Metal - 0

)(tETempty  
 

(11) 

 
The elevation-table can be moved from position 0 to 1 or vice versa using the actuator signal namely moveET.  The 
actuator can be specified as: 
 





=
 position  lower  andBelt -Feed with linein  ET Move - 1

                   position   up androtation  o45  toET Move - 0)(tmoveET  
 

(12) 

 
4.3  Robot 
 
The robot comprises two orthogonal arms.  For technical reasons, the arms are set at two different levels.  Each arm 
can retract or extend horizontally.  Both arms rotate jointly.  Mobility on the horizontal plane is necessary, since 
elevating rotary table, press, and deposit belt are all placed at different distances from the robot’s turning centre. 
 
The end of each robot arm is fitted with an electromagnet that allows the arm to pick up metal plates.  The robot’s 
tasks consist of taking metal blanks from the elevating rotary table to the press and transporting forged plates from 
the press to the deposit-belt.  See Fig. 4. 

Feed Belt  Elevation Table 

Top view 

Top view 

Side view 

Side view 

a) ETpos = 1 

b) ETpos = 0 
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Fig. 4: Robot and Press (top view) 
 
We can specify the electromagnetic actuators  for the two arms as follows: 
 





=
      1 Armon magnet  Activate - 1

   Arm1on magnet  Deactivate - 0
)(1 tActMagnetA  

 
(13) 

   





=
      2 Armon magnet  Activate - 1

   2 Armon magnet  Deactivate - 0
)(2 tActMagnetA  

 
(14) 

 
The true signal will cause the magnet to activate and false to deactivate the magnet.  There are two sensors for each 
arm to detect whether the metal is loaded or not.  This can be specified by: 
 
 





=
metal with loaded is 1 Arm - 1

           loadednot  is 1 Arm - 0
)(1 tloadA  

 
(15) 

  





=
metal with loaded is 2 Arm - 1

           loadednot  is 2 Arm - 0
)(2 tloadA  

 
(16) 

 
The robot is fitted with two arms so that the press can be used for maximum capacity.  Below, we describe the order 
of the rotation operations the robot arm has to perform (Fig. 5); supposing the feed-belt delivers blanks frequently 
enough.  We presuppose that initially the robot is rotated such that  Arm 1 points towards the elevating rotary table, 
and assume that all arms are retracted to allow safe rotation. 
 

1. Arm 1 extends and picks up a metal blank from the elevating rotary table. 
2. The robot rotates counterclockwise until Arm 2 points towards the press.  Arm 2 is extended until it reaches 

the press.  Arm 2 picks up a forged work piece and retracts. 
3. The robot rotates counterclockwise until Arm 2 points towards the deposit -belt.  Arm 2 extends and places 

the forged metal plate on  the deposit-belt. 
4. The robot rotates counterclockwise until Arm 1 can reach the press.  Arm 1 extends, deposits the blank in 

the press, and retracts again. 

 
press 

electromagnet 

Arm1 

electric motor 

electric motor 

electromagnet 

electric motor 

robot 

Arm 2 
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Fig. 5: Order of Robots’s actions 
 
Finally, the robot rotates clockwise towards its original position, and the cycle starts again with 1. 
 
There are four robot positions  that can be detected by 3 sensors.  The three sensors respectively indicate how far the 
arm 1 extends, how far the Arm 2 extends and the angle of the rotation of the robot.  This can be represented in DC 
as follows: 

A1Extend : Time →  R (17) 
 
A2Extend : Time →  R (18) 
 
Rrotate: Time →  R (19) 

 
At this level of abstraction, we can combine this three sensor signals to four positions in concerned as follows: 
 

RobotPos :  Time → Position, where (20) 
 










=

                        Press in the 1 Arm - 3
Belt    -Deposit over the 2 Arm - 2

                        Press in the 2 Arm - 1
Table-Elevation over the 1 Arm - 0

)(tRobotPos  

 
 
 
(21) 

 
There are also three actuators that can be used to rotate and extend/retract both arms.  However, at this stage of 
abstraction, we will use one signal actuator called next which will activate the rotation motor and the both arms so 
that it will move to the next position.  This actuator can be represented by DC as follows: 
 





=
motor srobot'  the tosend Signal - 1

                         send  signal  No - 0
)(tnext  

 
(22) 

 
By using one composite sensor for robot position and one actuator signal, we can simplify the specification. 
 
4.4  Press  
 
The task of the press is to forge metal blanks.  The press consists of two horizontal plates.  The lower plate is 
movable along a vertical axis.  The press operates by pressing the lower plate against the upper plate.  Because the 
robot arms are placed on different horizontal planes, the press has three positions.  In the lower position, the press is 

1 2 3 4
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unloaded by Arm 2, while in the middle position it is loaded by Arm 1.  The operation of the press is coordinated 
with the robot arms as follows  (see Fig. 6): 
 

1. Open the press in its lower position and wait until Arm 2 has retrieved the metal plate and left the press. 
2. Move the lower plate to the middle position and wait until Arm 1 has loaded and left the press. 
3. Close the press, i.e. forge the metal plate, and then repeat step 1 cyclically. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Robot and Press (side view) 
 
We have three sensors to detect the position of the moving level whether it is at the lower, middle or upper position 
as follows: 
 





=
position  lower  In the - 1
position lower in Not  - 0

)(tPlowPos  
 

(23) 

   





=
position   middle In the - 1
position  middlein Not  - 0

)(tPmidPos  
 

(24) 

   





=
position  upper  In the - 1
position upper in Not  - 0

)( tPupPos  
 

(25) 

 
Another sensor is to detect whether the presser is empty or not.  The state to model this sensor can be as follows: 
 





=
 Press  theof level movable on thenot  is Metal - 1

        Press  theof level movable on the is Metal - 0
)(tPempty  

 
(26) 

 
We will use one actuator signal that will make the motor move the level to the next posit ion.  This signal can be 
specified as 
 





=
motor  srobot'  the tosend Signal - 1

                            send signal No - 0
)(tmoveP  

 
(27) 

 
4.5  Deposit-Belt 
 
The task of the deposit-belt is to transport the work pieces unloaded by the second robot arm to the packing 
operator.  A photo-electric cell is installed at the end of the belt.  It reports whether or not a work piece reaches the 

Press 

upper position 

middle position 

lower position 

Arm 2 
Robot  

Arm 1 
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end section of the belt.  The control program then has to stop the belt.  The belt can restart as soon as the operator 
picks up the work piece. 
 
This sensor can be represented by DC as follows: 
 





=
 Belt      -Deposit of end at the Metal - 1

Belt -Deposit of end at the Metal No - 0
)(tMendDB  

 
(28) 

 
To avoid the Arm 2 unloading a metal on another metal that is previously loaded onto the belt, another sensor call 
DBempty  is installed at the position where Arm 2 unloads.  This can be represented by: 
 





=
Belt  -Deposit ofposition  dropping on thenot  is Metal - 1

   Belt      -Deposit ofposition  dropping on the is Metal - 0
)(tDBempty  

 
(29) 

 
Only one actuator signal involve to move and stopping the Deposit belt.  This can be specified in DC as follows: 
 





=
motor Belt -Deposit Start the - 1
motor Belt -Deposit  theStop - 0

)(tmoveDB  
 

(30) 

 
 
5.0  ASSUMPTIONS 
 
In this phase we list the assumptions which are the aspects of the behaviour of the plant that cannot be controlled by 
the controller.  This behaviour must be provided by the vendor of the plant. 
 

1. If the Feed-Belt is moving, eventually the metal will reach at the end of the table.  This will set on the 
sensor MendFB.  

   ( )  MendFBMendFBmoveFB →¬∧ 1
ε

 
 

(31) 

 
2. Once the metal crosses the the MendFB  sensor while the Elevation Table is in-line with the Feed-Belt, this 

will switch off the sensor  ETempty  and also MendFB.  

     ( )  MendFBETemptymoveFBMendFBETPos ¬∧¬∧∧  → 2ε
 

 
 

(32) 
 
3. A true signal sent to actuator moveET will lead to the movement of the Elevation-Table to the position in-

line with the feed-belt and set the sensor ETPos  to 1.  On the other hand, if the signal 0 is sent, then the 
elevation-table will move to 45° and the upper position. 

   ETPosmoveET → 3
ε

 
 

(33) 

   ETPosmoveET ¬¬ → 4ε
 

 
(34) 

 
4. If the magnet of the Arm 1 is activated while it is over the elevation-table, it will set the sensor A1load  to 

true.  And at the same time the changes of A1load  from false to true, will lead the setting of  ETempty  to 
true. 

 

   

   
 ETemptyloadA

ETemptyloadA

RobotPosActMagnetA

∧

¬∧¬

∧

=∧

 →















15

1

01
ε

 

 
 

(35) 
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5. On the receipt of the next signal, the robot will extract the arm and turn, and extend the arm to the next 
position of the four possible positions 0 to 3. 

   ( )  16 ⊕=∧=  → iRobotPosnextiRobotPos
ε

 

 
 

(36) 
 

where 
 

4mod1ˆ1 +=⊕ ii  
 

(37) 

 
6. If the magnet of the Arm 2 is activated while it is in the press, it will set the sensor  A2load to true.  And at 

the same time, the changes of  A2load  from false to true, will change Pempty to true. 
 

   

   
 PemptyloadA

PemptyloadA

RobotPosActMagnetA

∧

¬∧¬

∧

=∧

 →















27

2

12
ε

 

 
 
 
 

(38) 

 
7. If the magnet of the Arm 2 is deactivated while it is over the deposit-belt, it will set the sens or A2load  to 

false.  The change of  A2load  from true to false will falsify DBempty. 
 

 

   

   
 DBemptyloadA

DBemptyloadA

RobotPosActMagnetA

¬∧¬

∧

∧

=∧¬

 →















28

2

22
ε

 

 
 
 

 
 
 

(39) 
 

8. If the magnet of the Arm 1 is deactivated while it is in the press, it will set the sensor A1load to false.  The 
change of  A1load  from true to false will falsify Pempty. 

 

   

   
 PemptyloadA

PemptyloadA

RobotPosActMagnetA

¬∧¬

∧

∧

=∧¬

 →















19

1

31
ε

 

 
 
 

 
 

(40) 
 

9. A signal MoveP will trigger the move level of the press from one position to another in cyclic order.  It 
moves from lower position to middle position, and then to the upper position and back to lower position. 

   ( )  PmidPosmovePPlowPos  →∧ 10
ε

 
 

(41) 

   ( )  PupPosmovePPmidPos  →∧ 11ε
 

 
(42) 

   ( )  PlowPosmovePPupPos  →∧ 12ε
 

 
(43) 

 
10. If the deposit-belt is moving when the sensor MendDB is off, eventually the metal will reach the end of the 

belt and cause the MendDB  to be set to on.  At the same time, the sensor DBempty  is set to on. 

   ( )  MendDBDBemptyMendDBmoveDB ∧¬∧  → 13ε
 

 
 

(44) 
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6.0  THE SPECIFICATIONS OF THE CONTROLLERS  
 
6.1  The Specification of the Feed-Belt Controller 
 

1. The feed-belt will be moved either when there is no metal at the end of the belt or the empty elevation-table 
is in-line with the feed-belt. 

     ( )( )  moveFBETemptyETPosMendFB  →∧∨¬ 1δ  

 
 

(45) 
 
2. The feed-belt will be stopped when the elevation-table is filled and also the other metal is at the end of the 

belt.  For safety, the belt must also be stopped when the metal arrives at the end but the elevation-table is 
not in-line with the feed-belt. 

 

   ( )

   ( )
 moveFB

ETPosMendFB

ETemptyMendFB

¬

¬∧

∨

¬∧

 →















2δ

 

 
 
 

 
 

(46) 
 
6.2  The Specification of the Elevation-Table Controller 
 

1. The filled elevation-table which is currently in-line with the feed-belt will be moved to the unloading 
position. 

   ( )  moveETETemptyETPos ¬¬∧  → 3δ
 

 
 

(47) 
 

2. On the other hand, when the empty elevation-table is at the unloading position, it will be moved back to the 
position in-line with the feed-belt. 

   ( )  moveETETemptyETPos  →∧¬ 4δ
 

 
 

(48) 
 
6.3 The Specification of the Robot Controller 
 
One of the most important requirements in the robot controller is, it must proceed in the order shown in Fig. 5.  The 
robot starts by loading Arm 1, then follows by loading Arm 2, unloading Arm 2 and unloading Arm 1.  The cycle is 
repeated again from the very beginning.  We will specify each operation and take into account the proper ordering.  
Please take note that the robot position is numbered from 0 to 3. 
 
Loading Arm 1 consists of two step.  The first is to bring the Arm 1 to the first position (i.e. RobotPos = 0) and the 
second is to activate the magnet to extract the metal from the elevation-table.  However, the arm must be at the last 
position and also the operation at that position must be completed.  The last operation is unloading the metal from 
Arm 1 into the press.  Therefore, we can use the state of A1load sensor to make sure that the previous operation is 
completed. 
 
The first DC formula states that, if the RobotPos is at the last position (i.e. 3) and the sensor A1load is 0, then we 
can send a signal to move the robot to the next position. 

   ( )  nextloadARobotPos →¬∧= 113
γ

 

 
 

(49) 
 
Once the Robot is at the position of loading Arm 1, we must check whether the elevation-table is ready at the 
unloading position and also if there is a metal to be loaded.  The DC formula below specifies the condition. 

     ( )  120 ActMagnetAETemptyETPosRobotPos  →¬∧¬∧=
γ

 

 
 

(50) 
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Loading Arm 2 consists of two steps.  One is to move the robot and arm to the position near to the press and then to 
activate the magnet.  To move the second arm into the press safely, we have to ensure that the robot must be at the 
first position; the operation of loading the first arm is already finished; the second arm is not yet loaded; the press is 
at the low position so that the Arm 2 will not collide with the press; and the press is not empty. 
 
The specification for this can be written using DC as follows: 

 

     

   
 next

PemptyPlowPos

loadAloadARobotPos

 →
















¬∧

∧

¬∧∧=
3

210
γ

 

 
 
 
 

(51) 

 
Once the robot is at the second position, we can activate the magnet provided that the second arm is  not yet loaded 
and the press is not empty.  The specification can be given as follows: 

     ( )  2421 ActMagnetAPemptyloadARobotPos →¬∧¬∧=
γ

 

 
 

(52) 
 
Unloading Arm 2.  To unload the second arm, we bring the robot and arm from the second position to the third 
provided the operation at the second position is completed.  This can be done by checking the A2load sensor.  Once 
the robot is at the third position, we can deactivate the magnet provided that there is no metal on the deposit-belt 
over the arm. 
 
The first formula specifies the movement and the second specifies the deactivation of the magnet. 

   ( )  nextloadARobotPos  →∧= 521
γ

 

 
 

(53) 

   ( )  262 ActMagnetADBemptyRobotPos ¬∧=  →
γ

 

 
 

(54) 
 
Unloading Arm 1. Unloading the metal from the first arm into the press also needs two steps as the other 
operations.  To move the arm into the press, we have to establish the following conditions: the robot is currently at 
third position; the second arm has been unloaded; the first arm is empty; the press is at the middle in order to avoid 
the collision with the press; the press is empty. 
 
The specification for the process of moving the Arm 1 is shown below: 

 

     

   
 next

PemptyPmidPos

loadAloadARobotPos

 →
















∧

∧

¬∧∧=
7

212
γ

 

 
 
 
 

(55) 

 
Once the arm is in the press, and the first arm is loaded and the press is empty, we can deactivate the first arm.  The 
specification can be written as: 

     ( )  1813 ActMagnetAPemptyloadARobotPos ¬∧∧=  →
γ

 

 
 

(56) 
 
6.4  The Specification of the Press Controller 
 
The Press’s controller needs to control the moving’s level of the press.  There are three positions: low, middle and 
upper position.  The order of the movement is low, and then middle and followed by the upper position.  From the 
upper position, the press should be moved to the lower position and the cycle starts again.  At any time during the 
movement, no arm should be in the press.  This can be done by making sure that the robot is not at the second and 
fourth position.  The second position is when the second arm is in the press and the fourth is when the first arm is in 
the press.  We can specify this by: 
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( )31ˆPr =∧=¬= RobotPosRobotPosessArmNotIn  
 

 
(57) 

 
With this we can specify the movement as follows.  Please remember that the moveP  actuator will cause the level to 
move to the next position as stated earlier as part of the assumptions. 
 

1. At any time t  when the level is at the lower position and it is empty and also there is no arm in the press, 
the level can be moved by sending the moveP . 

     ( )  movePessArmNotInPemptyPlowPos →∧∧ 1Pr
υ

 

 
 

(58) 
 
This condition is satisfied when the second arm of the robot has unloaded the metal from the press and has 
left the press. 

 
2. Whenever the level at the middle position and there is a metal as well as no arms in the press, the controller 

needs to move the level to the upper position. 

     ( )  movePessArmNotInPemptyPmidPos  →∧¬∧ 2Pr
υ

 

 
 

(59) 
 

3. Once the press has forged the metal, it will return to lower position for Arm 2 to unload.  However, the 
level can only be moved if there is no arm in the press. 

     ( )  movePessArmNotInPemptyPupPos  →∧¬∧ 3Pr
υ

 

 
 

(60) 
 
6.5  Specification of the Deposit-Belt Controller 
 
The controller is responsible for moving the belt when there is no metal at the end of the belt or stop otherwise.  The 
specification can be given as follows: 

   moveDBMendDB  →¬ 4υ
 

 
 

(61) 

   moveDBMendDB ¬ → 5υ
 

 
 

(62) 
 
 
7.0  CONCLUSION 
 
We have shown that the notation of state in Duration Calculus is very useful in describing and modelling the real-
time or reactive system.  We used state notat ion to model the input or the sensor and also the output or the actuator 
of the system.  We have also shown that the leads-to notation is very handy in specifying the system.  In the stage of 
producing the assumptions, we use the state of the sensors as conditions and actuators as the actions which lead to 
new sensors state. 
 
Our main contribution is how we use the sensors state as shared variables to synchronise the controllers.  We use the 
combination of state of the sensors as a condition that must be fulfilled before any signal is sent to any actuator. 
With this specification, one can implement a system on a shared-memory multiprocessor. 
 
The research can be extended further such as implementing the system on Distributed Shared Memory (DSM), 
which is the current and future trends of Distributed Real -Time computing.  Other area of research is the formal 
proving technique for verification of a specification. 
 



Aminuddin, Jifeng and Abdullah 

94 

REFERENCES 
 
[1] M. R. Hansen, Z. Chouchen, “Duration Calculus: Logical Foundation”.  Formal Aspects of Computing. 3:1-

1000, 1997. 
 
[2] A. P. Ravn, “Design of Embedded Real-Time Computing System”.  Thesis Denmark Technical University, 

Denmark.  1995. 
 
[3] The Raise Language Group, The Raise Specification Language.  Prentice Hall.  1992. 
 
[4] C. Leverentz, T. Linder, “Case Study Production Cell”.  A Comparative Study in Formal Software 

Development, FZI-Publication.  1/94. 
 
[5] S. Austin, F. I. Parkin, “Formal Methods: A Survey”.  Technical Report , National Physical Laboratory, Great 

Britain.  1993. 
 
[6] M. Broy, S. Jähnichen, editors: Korrekte Software Durch Formale Methoden, Technische Universität  Berlin, 

Franklinstarabe 28-29, D-10587 Berlin.  March 1993. 
 
[7] Z. Chouchen, A. P. Ravn, M. R. Hansen, “An Extended Duration Calculus for Hybrid Real-Time Systems”, 

UNU/iist  Report No. 9.  1993. 
 
 
BIOGRAPHY 
 
Rusdi Md. Aminuddin obtained his Master of Computer Science from Western Michigan University in 1989.  He 
is a lecturer at the School of Information Technology, University Utara Malaysia.  Currently, he is on study leave 
pursuing his PhD at Universiti Sains Malaysia.  His research areas include distributed and parallel computing and 
Fault-Tolerance on cluster environment.  His teaching areas include Data Communication and Networking, and 
Concept of Programming Languages. 
 
He Jifeng is a Senior Research Fellow of UNU/IIST, on leave from East China Normal University and Shanghai 
Jiao Tong University of China, where he is a professor.  His previous position is as Senior Research Fellow at 
Oxford University Computing Laboratory, Programming Research Group.  His research interest lies in the sound 
methods of specification of computer systems, communications, application and standards, and the techniques for 
designing and implementing those specifications in software and /or hardware, with high reliability and at low cost. 
 
Rosni Abdullah obtained her PhD in Computer Science from Loughborough University, UK in 1997.  Currently, 
she is an Associate Professor and Deputy Dean for Postgraduate Studies and Research at the School of Computer 
Science, Universiti Sains Malaysia.  She also leads the Parallel and Distributed Research Group at the department.  
Her research interest includes parallel and distributed computing Design and Analysis of parallel algorithms and 
Distributed Shared Memory (DSM). 


