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ABSTRACT 
 
This paper proposes several concepts that form the basis for slicing object -oriented programs.  In the case of object-
oriented languages, new relations occur between language constructs such as classes, methods, and messages.  
Thus new forms of dependencies have to be considered in addition to the traditional control and data dependencies 
that form the basis of most software maintenance tools that are currently available for maintaining procedure-
oriented programs.  We show how the proposed slicing concepts can be applied within the software maintenance 
process by giving an illustration through an example of Java program. 
 
Keywords: Software Maintenance, Object-Oriented Programs, Program Slicing, Program Understanding 
 
 
1.0  INTRODUCTION 
 
The last decade of the twentieth century has seen a rapid increase in the use of object-oriented approaches to 
software development.  This trend is expected to continue in this millennium in light of the continuing progress and 
utilisation of the Java-based technology , particularly in the area of distributed computing.  Eventhough advocates of 
the object -oriented approach generally believe that it can help in improving the readability of programs, the basic 
maintenance tasks to be carried out on them are something that still cannot be avoided.  In other words, during the 
maintenance phase, object-oriented programs still need to be understood and later modified for the purpose of 
performing corrective or adaptive maintenance, functional enhancement as well as efficiency improvement.  
Therefore, if thus far various software maintenance systems have been developed to help in maintaining software 
systems developed through the use of the traditionally popular procedure-oriented approaches, we would expect that 
similar situation is also applicable to the maintenance of object-oriented systems. 
 
Analysing dependencies between software components is one of basic activities used by a software maintenance 
engineer to identify various relationships among program elements.  In the case of procedure-oriented programs, 
control and data dependencies are normally sufficient for helping him understand and trace their behaviour [1-5]. 
Although the expected benefits that one can gain through object -oriented development can be high, maintaining 
object -oriented programs can be problematic if not done systematically.  The salient features of object-oriented 
techniques such as polymorphism, inheritance, encapsulation  and dynamic binding are the main reasons for many 
maintenance problems.  These additional features create additional dependencies between program elements and 
thus make the problem of understanding object-oriented systems more tedious and can be more complex than the 
procedure-oriented counterparts. 
 
In this paper, we adapt the concept of program slicing to capture dependencies that are useful for maintaining 
object -oriented programs.  To support this, we propose several new concepts that form the basis for slicing object-
oriented programs in general.  This extends the original notion of program slice [6, 7] to cover several types of 
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program fragments that are believed to be useful in carrying out the maintenance of object-oriented programs.  We 
show how the proposed slicing concepts can be applied within the software maintenance process by giving an 
illustration through an example of Java program. 
 
 
2.0  DEPENDENCIES IN OBJECT-ORIENTED PROGRAMS 
 
Object-oriented techniques introduce several new features to be incorporated into the resulting object -oriented 
programs.  Hence, as a result of applying these techniques in developing large programs, several new dependencies 
between program components are important to the program maintenance tasks.  These dependencies involve 
additional program components such as classes, methods and messages, which can be very difficult to capture due to 
additional types of relationships such as inheritance, polymorphism and dynamic binding.  
 
The following convention is used throughout this paper: 
 

1. P denotes the program to be maintained. 
2. Ent(P)  denotes the set { id | id is either the symbol “_”, “*” , an identifier (name) of a class or method, 

or a labelling of any statement or variable in P }. The special symbols “_” and “*” denote any or all 
other members in Ent(P)  respectively, that can satisfy certain given properties. 

3. Var(A) denotes the set { v | v is a public, protected, or private variable declared in the fields of class A }. 
A.v  denotes the variable v ∈ Var(A). 

4. Mtd(A) denotes the set {m| m is a method declared in the fields of class A }. A.m denotes the method m ∈ 
Mtd(A). A.m.s and A.m.v denote the statement s in m ∈ Mtd(A) and variable v declared in m respectively. 

5. Var(P) denotes the set { v | v ∈ Var(A) and A is a class in P }. 
6. Dep(P) denotes the set { d | d is a dependence relation that is  defined for classes and their components in 

P }. 
7. use(x) denotes the set of variables which may be referenced when x is being executed. 
8. def(x) denotes the set of variables which may be modified when x is being executed. 

 
 
3.0  BASIC RELATIONSHIPS 
 
Various relationships between statements, variables  and methods within and across classes are the cause of 
dependencies, which are of interest to the maintenance process.  For our purpose, we have identified ten basic 
(direct) relationships which are defined as follows: 
 
Execution sequence: Let A be a class, s and t be any two statements occurring in a method  m of A.  The execution 

flow relation, denoted by A.m.s →e A.m.t holds if and only if t is executed immediately 
after s for some execution of s.  This relationship is undefined for statements between two 
different methods. 

 
Usage relationships: This type of relationship occurs between methods, statements and variables.  Let A and B be 

two classes, m∈ Mtd(A), s is a statement in m, n  ∈ Mtd(B) and v ∈ Var(B).  The usage 
relationships include the following: 

 
1. Statement using method: A.m.s →u B.n if and only if s contains a message that 

corresponds to n .  

2. Method using a method: A.m →u B.n if and only if there exists a statement s in m such 

that A.m.s →u B.n . 

3. Statement using variable: A.m.s →u B.v if and only if any of the following holds: 
i. B.v ∈ use(A.m.s) 

ii. ∃ m′∈ Mtd(B) such that  A.m.s →u B.m′ and  B.v∈ use(B.m′.s′)  for some s′  in 
m′. 

4. Method using variable: A.m →u B.v if and only if there exists a statement s in m such 

that A.m.s →u B.v . 
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Affect relationships: Our main concern here is how a statement or method affects the state of other elements.  In 
this case, we view the change in state as being the change in the value of any variables that 
are within the scope of the latter.  Let A and B be two classes, m∈ Mtd(A), s is a statements in 
m, n  ∈ Mtd(B) and v ∈ Var(B).  

1. Statement affecting variable: A.m.s →a B.v  if and only if any of the following holds: 
i. B.v∈ def(A.m.s) 

ii. ∃ m′∈ Mtd(B) such that A.m.s →u B.m′ and B.v∈ def(B.m′.s′)  for some s′  in 
m′. 

2. Method affecting variable: A.m →a B.v  if and only if there exists a statement s in m 

such that A.m.s →a B.v . 
 
Class relationships: Three main relationships between classes need to be represented.  The last two are merely 

extensions to the use and affect relationships to the class level.  They are:  

1. Inheritance: A →i B if and only if A is a subclass (derived class) of B. 

2. Class using class: A →u B if and only if either one of the following holds: 

i. ∃ m∈ Mtd(A) and v∈ Var(B) such that A.m →u B.v . 

ii. ∃ m∈ Mtd(A), n∈ Mtd(B), such that A.m →u B.n. 

3. Class affecting class: A →a B if and only if ∃ m∈ Mtd(A) and v∈ Var(B) such that 

A.m →a B.v . 
 
 
4.0  DEPENDENCE RELATIONSHIPS 
 
In general, we say that a program element is dependent on the other if some maintenance tasks is being done to any 
of them, then the program’s behaviour involving the other may be affected.  The maintenance tasks may involve 
removal and modifications made to the element in question.  Based on the basic relationships defined earlier, several 
types of dependencies that are intuitively important for understanding the structure and behaviour of object-oriented 
programs are formulated.  These dependencies are defined recursively as follows: 
 
Control dependence: Let s and t be any two statements in a method m defined in a class A.  We say that t is control 

dependent on s, denoted by A.m.s
e

⇒ A.m.t if and only if any of the following holds: 

i. A.m.s →e A.m.t 

ii. There exists a statement s′ also in m such that A.m.s
e

⇒ A.m.s′ and A.m.s′ →e A.m.t. 
 
Control dependence relation is undefined for statements between two different methods. 
 
Usage dependence 
1. Statement dependence on a method/variable: A statement  s in a method m of a class A is said to be 

dependent on Y which is either a method n or a variable v in a class B, denoted by A.m.s 
u

⇒  Y if and only if 
any of the following holds: 

i. A.m.s →u Y 

ii. ∃  m′  ∈Mtd(A')  such that  A.m.s
u

⇒  A′.m′  and A′.m′ →u  Y  for a class A'  in P. 

iii.  ∃  s′ in m and a variable w ∈Var(A) such that  A.m.s′ 
e

⇒ A.m.s,  A.m.s′ →a A.w, A.m.s →u A.w , 

and A.m.s′ 
u

⇒ Y. 
 
2. Method dependence on method/variable: Let A and B be two classes and Y  be either method B.n or variable 

B.v .  A.m
u

⇒Y, if and only if ∃ s in m such that A.m.s 
u

⇒ Y. 
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Affect dependence:  

1. Variable dependence on statement : A variable v defined in a class B is said to be dependent on a 

statement s in a method m of a class A, denoted by A.m.s
a

⇒B.v if and only if any of the following 
holds: 

i. A.m.s →a B.v  

ii. ∃  m′∈ Mtd(A′) such that A.m.s 
u

⇒ A′.m′  and A′.m′ →a B.v. 

iii. There exists a statement  s' in m and variable w∈ Var(A) such that A.m.s
e

⇒ A.m.s′, 

A.m.s →a A.w, A.m.s' →u A.w, and A.m.s′ 
a

⇒ B.v. 
 

2. Variable dependence on a method: A variable v defined in a class B is said to be dependent on a 

method m defined in a class A, denoted by A.m
a

⇒B.v  if and only if ∃ s in m such that  A.m.s
a

⇒B.v. 
 
Class dependence: The following dependencies are defined: 

1. Dependence through inheritance: A
i

⇒ B if and only if any of the following holds: 

i. A →i B 

ii. There exists a class A′ such that A
i

⇒ A′ and A′ →i B.  

2. Dependence through usage : A
u

⇒ B if and only if any of the following holds: 

i. ∃  m ∈ Mtd(A) and ∃  n ∈ Mtd(B) such that A.m
u

⇒ B.n. 

ii. ∃  m ∈ Mtd(A) and ∃  v ∈ Var(B) such that A.m
u

⇒ B.v. 

3. Dependence through causing side effects: A
a

⇒B if and only if ∃  m∈ Mtd(A) and v ∈ Var(B) such 

that A.m
a

⇒ B.v. 
 
For convenience in symbolic manipulation, all the basic and dependence relations defined earlier are taken to be 

irreflexive.  Also for simplicity, any relation r,  X →r Y →r Z, X
r

⇒Y
r

⇒ Z denotes X →r Y, Y →r Z 

and X
r

⇒ Y, Y
r

⇒ Z respectively. 
 
 
5.0  TECHNIQUES FOR SLICING OBJECT-ORIENTED PROGRAMS 
 
The original concept of program slicing was introduced by Weiser [6, 7].  It refers to a technique of capturing 
statements that are relevant to a particular computation, which is to be specified by a slicing criterion.  The resulting 
program fragment is called a program slice.  Ever since the introduction of this concept of a program slice, various 
slightly different notions of program slices have been proposed, together with methods of computing them.  A 
comprehensive survey of program slicing techniques can be found in [8]. 
 
For our purpose, we choose to extend the traditional concept of program slice to cater for program fragments that are 
more amenable to the problem of maintaining object -oriented programs.  Slicing object-oriented programs would 
then involve capturing the various combinations of dependencies between classes as well as their components that 
are considered important to software maintenance.  This section discusses definitions of several concepts of slices 
that bear strong relationships with dependencies of interest. 
 
Convention: 

i. [A] refers to class A without any elements removed from it. 
ii. [A/V] refers to class A with the set of variables V and removal of elements not involved in using/defining 

any variables in V. 
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iii.  [A.m] refers to class A with only the method m and the relevant associated declarations in A. 
iv.  [A.m/V] refers to [A.m] with the set of variables V and removal of elements not involved in 

using/defining any variables in V.  
v. [A.m/S] refers to [A.m] with the set of statement s S  and the relevant associated declarations in A. 

 
Definition: An elementary slicing criterion is a 4-tuple C=< d, E 1, E2, V > where, 

1. d ∈ Dep(P), 
2. E1, E2 ∈ Ent(P) and the expression E1 d E2 is valid. 
3. V ⊆ Var(P).  

 
The slicing criterion C can be used to specify the dependencies of interest that may exist between entity E1 and E2 in 
P.  A slice S  with respect to a slicing criterion C=<d, E, E2, V> denoted by Slice(< d, E1, E2, V >), is a program 
fragment of P that is obtained through several slicing rules. 
 
Dependencies can also be categorised according to levels.  The first category is class-level involving a class to 
another class.  The second category is method-level involving a method or a statement within a method to another 
method or variable in a class.  The final category is statement-level which is basically intra-method involving 
statements within a given method.  Slices, in turn, can also be categorised according to such levels of dependencies 
intended to be captured.  
 
The most general type of slices are the class-level slices, which capture class-level dependencies.  This type of slices 
intuitively will exclude a lesser number of elements compared to the lower-level slices of similar form of criterion.  

The general form of slicing criterion for them is C = < 
d

⇒ , A, B, V >, where d ∈ { i, u, a  }.   
 
Class-level slicing based on dependence through inheritance is specified according to the following rule: 

Slicing Rule 1: If C= < 
i

⇒ , A, B, V > then   Slice(C)  is S1∪ S2∪ S3 where: 
i. S1={[A]} 

ii. S2={ [Y / (V ∩ Var(Y))]A 
i

⇒  Y 
i

⇒  B }  

iii. S3={ [B/ (V ∩ Var(B))] } if A 
i

⇒B 
 
Slice(C) obtained through rule 1 shows how any variable in V is being used by the class A through class B.  
Essentially, it will capture classes A, B and all the intermediate classes linking A to B if A and B are related through 
inheritance .  However, if this is true, only the parts of B and intermediate classes that are related to variables in V 
are captured. 
 
Class-level slicing based on dependence through usage or causing side effects is specified according to the following 
rule: 

Slicing Rule 2:  If C= < 
d

⇒ , A, B, V > where  d  ∈ {u, a} then   Slice(C) is S1∪ S2∪ S3 where: 
i. S1={[A]} 

ii. S2={ [Y / (V ∩ Var(Y))] A 
u

⇒  Y 
u

⇒  B} 

iii.  S3={ [B / V'] V' ⊆ V and ∀v ∈ V', ∃ m∈ Mtd(A) such that  A.m
d

⇒ B.v} 
 
Slice(C) obtained through rule 2 shows how any variable in V is being used or affected by the class A through class 
B.  Essentially it will capture classes A, B and all the intermediate classes linking A to B if A and B are related 
through such dependencies.  However, if this is true, only the parts of B and intermediate classes that are related to 
variables in V with respect to the dependence relation of interest are captured. 
 
Method-level slicing gives a more refined view of the use and affect dependencies between classes.  They can be 
obtained through four slicing rules.  Before we will present these rules, we will present the only rule for performing 
statement -level slicing. 
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Definition: A definition-use chain from statements s to t in a given class method is an ordered set of statements 

du(s, t)=(s, x1, x2,…,xn, t) where s
e

⇒  x1

e
⇒  x2

e
⇒ …xn

e
⇒  t such that  def(s)  ∩ use(x1)  ≠ ∅, def(xn)  ∩ 

use(t)  ≠ ∅, and for every I satisfying (1<I≤n), def(x I-1) ∩ use(xI) ≠ ∅. 
 

Slicing Rule 3: If C= < 
e

⇒ , A.m.s, A.m.t, V  > then Slice(C ) is [A.m /(S1 ∪ S2 ∪ S3)] where 

i. S1={x| A.m.s
e

⇒ x
e

⇒ A.m.t and ∃ v∈ ( V ∩ (use(x) ∪  def(x))) }. 

ii. S2={x| x∈  du(y, z) where A.m.s
e

⇒ y
e

⇒ z
e

⇒ A.m.t and ∃ x'∈ { S1 ∩ du(y, z) }}. 
 
iii S3={A.m.s} if ∃ x∈ (S1 ∪ S2) such that def(A.m.s) ∩ use(x) ≠ ∅  
iv {A.m.t} if ∃ x∈ (S1 ∪ S2) such that  def(x) ∩ use(A.m.t)≠ ∅. 

 
Slicing rule 3 captures the statements between A.m.s and A.m.t inclusive, which involve in using or defining any of 
the variables in V either directly or indirectly through def()-use() chains. 
 
Finally, the four slicing rules for performing method-level slicing are as follows: 

Slicing Rule 4: If C= < 
u

⇒ , A.m, B.n, V > then Slice(C )  is S1∪ S2∪ S3 where: 
i. S1= {[A.m]} 

ii. S2={ [Y.k ]  A.m 
u

⇒  Y.k 
u

⇒  B.n and   B.n →u B.v for some v ∈ V} 

iii.  S3= {[B.n /V'] such that V'⊆ V and ∀ v∈ V', A.m
u

⇒ B.n and B.n →u B.v} 
 
Slice(C) obtained through rule 4 shows how any variable in V is being used by method A.m through method B.n . 
This slice captures all the intermediate classes, which could form more than one path leading to B.n, if B.n  
references any of the variables in V.  If this condition is untrue, the slice will contain only [A.m] which implies that 
method m in class A is not dependent on method n  in class B in order to reference any variable in V.  However, if 
this condition is true, only a portion of B.n  will be of interest and captured. No other method in B will be captured. 

Slicing Rule 5: If C= < 
u

⇒ , A.m.s, B.n, V > then Slice(C )  is S1∪ S2∪ S3∪S4 where: 
i. S1={[A.m /{A.m.s}]} 

ii. S2={ [Y.k ]  A.m.s 
u

⇒  Y.k 
u

⇒  B.n  and  B.n →u B.v for some v ∈ V } 

iii.  S3= { [B.n ] V' ⊆ V and ∀v ∈ V',  A.m.s
u

⇒  B.n and B.n
u

⇒  B.v } 

iv. S4=U
k

i 1=

Slice(<
e

⇒ ,A.m.si, A.m.s,def(A.m.s i)>)   where A.m.si →u y for some y ∈ S2. 

 
Slice(C) obtained through rule 5 gives a more restricted view of the dependence of interest as specified by rule 4 
above.  Specifically, it seeks to show how any variable in V is being used by statement s in method m through method 
B.n.  This rule requires the resulting slice to capture the intermediate classes leading to B.n  that are traceable to A.m.s 
only, if B.n references any of the variables in V.  In addition, this type of slice, through S4 will capture only the 
relevant intermediate statements between A.m.s and other statements logically above it, from which A.m.s has 
obtained this dependency indirectly. 

Slicing Rule 6: If C= < 
d

⇒ , A.m, B.v, _ > where  d  ∈ {u , a}  then Slice(C )  is S1∪ S2∪ S3 where: 
i. S1={[A.m]} 

ii. S2={ [Y.k ]  A.m 
u

⇒  Y.k 
d

⇒  B.v } 

iii.  S3={ [B / {v}]} if A.m
d

⇒ B.v  
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Slicing Rule 7: If C= < 
d

⇒ , A.m.s, B.v, _ > then Slice(C )  is S1∪ S2∪ S3∪S4 where: 
i. S1={[A.m / {A.m.s}]} 

ii. S2= { [Y.k ]A.m.s 
u

⇒  Y.k 
d

⇒  B.v } 

iii. S3={ [B / {v}]} if A.m.s 
d

⇒  B.v. 
iv. If d is u then  

S4=U
k

i 1=

Slice(<
e

⇒ ,A.m.si, A.m.s,def(A.m.s i)>) where A.m.si →u y for some y ∈ S2. 

Else if d is a then 

S4=U
k

i 1=

Slice(<
e

⇒ ,A.m.s, A.m.s i, def(A.m.s) >) where A.m.si →u y for some y ∈ S2.  

Slice(C)  obtained through rule 6 and 7 above further gives a more restricted view, in the sense that the main interest 
is how a particular variable B.v  is used or affected by statement A.m and A.m.s respectively. In this case, even if          

A.m 
d

⇒  B.v  (for rule 6) and A.m.s
d

⇒ B.v  (for rule 7) is true, [ B/ {v} ] may not include any method in B if the 
dependency is through direct access on B.v  by a statement in a method in S2.  In C++, B.v  must be either protected 
or public.  On other hand, unlike rule 4 and 5, portions of more than one method in  B may be captured.  For rule 7, 
like rule 5, it will capture only the relevant intermediate statements between A.m.s and other statements logically 
above or below it when the dependence relation d  is u  or a  respectively, from which A.m.s has obtained this 
dependency indirectly. 
 
 
6.0  ILLUSTRATION OF USE 
 
The concept proposed in this paper can be applied within software maintenance tasks particularly in understanding 
the dependencies among elements of object-oriented programs.  We foresee the normal approach would be to 
formulate meaningful queries related to various aspects of interests.  These queries are, in turn, transformed into 
various slicing criteria that will be used to obtain slices that can be analysed and utilised for maintenance purposes. 
 
Consider the program in Appendix A as the input program that needs to be sliced. 
 
Example 1: Slicing using criteria  

C = Slice ( < 
e

⇒ , Discount.increase.1, Discount.increase.9, {rate}> ) will involve the following steps according to 
Rule 3:  

1) S1 = {2, 2.1, 3, 3.1, 5} 
2) The maximal definition-use  chains between statements 1 and 9 involving any statement is S1 are 

{(2.1, 5, 6, 7), (3.1, 5, 6, 7)} 
3) S2 = {2.1, 3.1, 5, 6, 7} 
4) S3 = {1} since def(1)  ∩ use(2)  ≠ ∅  
5) S4 = {9} since def(5)  ∩ use(9)  ≠ ∅  
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Therefore, based on the above computations, Slice ( < 
e

⇒ , Discount.increase.1, Discount .increase.9, {rate}>) 
includes the following: 
 

 
Fig. 1: Result of Slicing 

 

Example 2: Computing Slice (< 
u

⇒ , TestComputeArea.ma in, circle.findArea, {radius} >)  will involve the 
following steps according to Rule 4: 

1) S1= {[TestComputeArea.main]} 
2) S2={ } since there are no intermediate classes through usage relationships. 

3) S3={[ circle.findArea/{radius}]} Since TestComputeArea.main   →u  circle.findArea and 

circle.findArea →u Circle.radius. 

Slice(< 
u

⇒ , Test ComputeArea.main, circle.findArea, {radius} >) obtained based on the above steps is represented 
as the boldfaced portion of the original program in Appendix A. 
 
 
7.0  CONCLUSION 
 
This paper discusses concepts relevant for slicing object-oriented programs.  In the case of object-oriented 
programs, data and control dependencies are no longer sufficient for supporting maintenance tasks.  Class and 
component dependencies are more natural in supporting the process of understanding the structure and behaviour of 
object-oriented programs.  Based on the identified dependence relations, several slicing rules have been developed 
for slicing object-oriented programs.  We also highlight the potential application of this new slicing approach by 
providing an illustration with two examples.  We leave the presentation of slices as a separate concern, although our 
present inclination is to present them as the highlighted parts of the original program. 
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APPENDIX A: A SAMPLE JAVA SOURCE CODE 

 
public class MyInput { 
public static int readInt() { … } 
public static double readDouble(){…  } 
public static String readString(){…  } 

} 
public class Cylinder extends Circle { 
private double length; 
public Cy linder()    { 

1 length = MyInput.readDouble(); 
} 

public Cylinder(double r, double l)  { 
2 length = 1; 

} 
public double getLength()  { 

3  return length; 
} 

public double findVolume() { 
4 return findArea()*length; 

} 
} 

public class TestComputeArea { 
static double radius; 
static double area; 
static double PI = 3.14159; 
public static void main(String[] args) { 

1 System.out.println("Enter radius"); 
2 radius = MyInput.readDouble(); 
3 Circle myCircle = new Circle(radius); 
4 System.out.println(myCircle.findArea()); 
5 Cylinder myCylinder = new Cylinder(); 
6 System.out.println(myCylinder.findArea()); 
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7 System.out.print(myCylinder.findVolume()); 
} 
} 

 
class Circle { 
 private double radius; 
 String color; 
 static double weight; 
 public Circle(double r, String c, double w) { 

1 radius = r; 
2 color = c; 
3 weight = w; 
 } 

  public Circle(double r, String c){ 
4 radius = r; 
5 color = c; 
 } 

  public Circle() { 
6 radius = MyInput.readDouble(); 
7 color = "white"; 
8 weight = 1.0; 
 } 

  public double getRadius() { 
9 return radius; 
 } 

  public double findArea()  { 
10 color = “Blue”; 
11 weight = 10; 
12 return radius*radius*Math.PI;  
 } 
 } 
 class Discount extends Salary{ 

  protected float rate; 
  float Total, discount; 
  String status; 
  void increase() { 

1 status = MyInput.readString(); 
2 if(status == “student”)  
2.1 rate = 20/100; 
3 if(status == “pensioner”)  
3.1 rate = 17/100; 
4 Total = node.Total;  
5 node.Total=node.Total -node.Total*rate; 
6 discount = Total - node.Total; 
7 System.out.println("discount :" +discount); 
8 System.out.println("Total Before Discount: " + Total); 
9 System.out.println("Total After Discount: " + node.Total);  
 } 
 } 


