Malaysian Journal of Computer Science, Vol. 14 No. 2, December 2001, pp. 106115

CONCEPTSFOR SLICING OBJECT-ORIENTED PROGRAMS

Nor Adnan Yahaya Hamed J. Al -Fawareh
Tdekom R & D Sdn. Bhd. Computer Science Dept.
UPM -MTDC Technology Incubation Centre Zarka Private University
43400 Serdang, Sdlangor ZarkalJordan
Maaysa Td: 05 - 3656100/ext. 1145
Td: 603 - 89423566 email: fawaren@hotmail.com
email: n.yahaya@computer.org fawareh@zpu.edu.jo

Abdul Azim Abd. Ghani
Faculty of Computer Science & IT
Universiti PutraMaaysa
43400 Serdang, Sdangor
Maaysa
Tel: 603 - 89486101
email: azim@fsktm.upm.edu.my

ABSTRACT

This paper proposes several concepts that form the basis for slicing object-oriented programs. In the case of object-
oriented languages, new relations occur between language constructs such as classes, methods, and messages.
Thus new for s of dependencies have to be considered in addition to the traditional control and data dependencies
that form the basis d most software maintenance tools that are currently available for maintaining procedure-
oriented programs. We show how the proposed slicing concepts can be applied within the software maintenance
process by giving an illustration through an example of Java program.

Keywords Software Maintenance, Object-Oriented Programs, Program Slicing, Program Understanding

10 INTRODUCTION

The last decade of the twentieth century has seen a rapid increase in the use of object-oriented approaches to
software developmert. This trend is expected to continue in this millennium in light of the continuing progress and
utilisation of the Java-based technology, particularly in the area of distributed computing. Everthough advocates of
the object-oriented approach generdly bdieve that it can hep in improving the readability of programs, the basic
maintenance tasks to be carried out on them are something that gill cannot be avoided. In other words, during the
maintenance phase, object-oriented programs dill need to be understood and later modified for the purpose of
performing corrective or adaptive maintenance, functiond enhancement a wel as efficiency improvement.
Therefore, if thus far various software maintenance systems have been developed to help in maintaining software
systems developed through the use of the traditionally popular procedure-oriented approaches, we would expect that
smilar Stuation is also gpplicable to the maintenance of object-oriented systems.

Andysng dependencies between software components is one of basc activities used by a software maintenance
engineer to identify various rdaionships among program eements. In the case of procedure-oriented programs,
control and data dependencies are normaly sufficient for helping him undersand and trece their behaviour [1-5].
Although the expected benefits that one can gain through object-oriented devdlopment can be high, mantaining
object-oriented programs can be problematic if not done sysemaicaly. The sdient features of object-oriented
techniques such as polymorphism, inheritance, encapsulaion and dynamic binding are the main reasons for many
maintenance problems. These additiond features create additiona dependencies between program eements and
thus make the problem of understanding object-oriented systems more tedious and can be more complex than the
procedure-oriented counterparts.

In this paper, we adapt the concept of program dicing to capture dependencies tha are useful for maintaining

obect-oriented programs. To support this, we propose several new concepts that form the basis for dicing object-
oriented programs in generd. This extends the origind notion of program dice [6, 7] to cover severd types of

106

Concepts For Slicing-Object-Oriented Programs

program fragments that are believed to be useful in carrying out the maintenance of object-oriented programs. We
show how the proposed dicing concepts can be applied within the software maintenance process by giving an
illustration through an exampleof Java program.

20 DEPENDENCIESIN OBJECT-ORIENTED PROGRAMS

Objed-oriented techniques introduce severd new features to be incorporated into the resulting object-oriented
programs. Hence, as a result of gpplying these techniques in developing large programs, severa new dependencies
between program components are impatant to the program maintenance tasks. These dependencies involve
additiond program components such as classes, methods and messages, which can be very difficult to capture due to
additional types of relationships such asinheritance, polymorphismand dynamic binding.

Thefallowing convention is used throughout this paper:

1. P denotesthe program to be maintained.

2. Ent(P) denotes the set { id | id is ether the symbal “_”, “*” | an identifier (name) of a class or method,
or a labdling of any statement @ variable in P }. The specid symbols “ " and “*” denote any or al
other membersin Ent(P) respectively, that can satisfy certain given properties.

3. Var(A) denotesthe set { v | v is a public, protected, or private variable declared in the fields of cdassA}.
Av denotesthevariablev T Var(A).

4. Mtd(A) denotes the set {m mis a method dedared in the fidds of dass A }. Amdenotes the method m 1
Mtd(A). A.m.s and A.m.vdenote the statement sinm1 Mtd(A) and varigblev decdlared in m respectively.

5. Var(P) denotestheset{ v|vi Var(A)and AisadassinP }.

6. Dep(P) denotes the set { d | d is a dependence relation that is defined for classes and their components in
P}

7. use(x) denotesthe set of variableswhich may be referenced when x is being executed.

8. def(x) denotesthe set of variableswhich may be modified when x is being executed.

30 BASICRELATIONSHIPS

Various rddionships between datements, varigbles and methods within and across cdasses are the cause of
dependencies, which are of interest to the maintenance process. For our purposs we have identified ten basic
(direct) relationships which are defined as follows:

Execution sequence Let A be adass s and t be any two statements occurring in a method mof A. The execution

flow rdation, denoted by Am.s¥HAE® Amt holds if and only if t is executed immediately
after s for some execution of s. This reationship is undefined for statements between two
different methods.

Usagerelationships: This type of relationship occurs between methods, statements and variables. Let A and B be
two classes, M Mtd(A), s is a satement in m, n 1 Mtd(B) and v 1 Var(B). The usge
relationships include the following:

1. Statement using method: Ams3%4® B.n if and only if s contains a message that
correspondston.

2. Method using a method: Am 3%4® B.n if and only if there exists a statement s in msuch
that Am.s3%4® Bn.
3. Staement using vaisble Am.s3#4'® B.vif and only if any of the following holds:
i. Bl use(A.m.s)
ii. $md Mtd(B) suchthat Ams 384® B.mtand B.vi use(B.mts§ for some stin
md
4. Method using varisble Am3%4® B.v if and only if there exists a statement sin msuch
that Am.s3%4® Buv.

107

Yahaya, Al+awareh and Ghani

Affect relationships: Our main concern here is how a statement or method affects the State of other eements. In
this case, we view the change in date as being the change in the value of any variables that
are within the scope of the latter. Let A and B be two dlasses, ml Mtd(A), s is a statements in
m,nT Mtd(B) andvi Var(B).

1. Statement affecting variable: Am.s3%4® Buy if and only if any of the following holds:

i. Byl def(Ams)
ii. $mi Mtd(B) suchtha Ams 384® Bmc¢ad Bvi def(B.mis§ for some st in
me

2. Method affecting variable Am3%#4® By if and only if there exists a statement s in m
suchthat Am.s 334® Buv.

Classrelationships: Three man relationships between classes need to be represented. The last two are merdy
extensionsto the use and affect relationshipsto the classlevel. They are:

1. Inheritance A F4® B if and only if A is asubclass (derived dass) of B.

2. Classusngdass: ABL® B if and only if either one of the following holds:
i. $m Mtd(A) and vi Var(B) suchthat Am3%4® Buv.
ii. $m Mtd(A), nl Mtd(B), such that Am 3%4® B.n.

3. Class dfedting dass A3%4® B if and only if $ mi Mtd(A) and Vi Var(B) such that
Am¥%4® Buv.

40 DEPENDENCE RELATIONSHIPS

In generd, we say that a program eement is dependent on the other if some maintenance tasks is being done to any
o them, then the program’'s behaviour involving the other may be affected. The mantenance tasks may involve
removad and modifications made to the element in question. Based on the basic reationships defined earlier, severd
types of dependencies that are intuitively important for understanding the structure and behaviour of object-oriented
programs are formulated. These dependencies are defined recursively asfollows:

Control dependence: Let sand t be any two statements in a method m defined in a dass A. We say that t is control

e
dependent on s, denoted by Am.sP Am.t if and only if any of the following holds:
i. Ams¥LE® Amt

e
ii. Thereexigsagatement stdsoinmsuchthat AmsbP Amstand AmstP4E® Amd.

Control dependence relation is undefined for statements between two different methods.

Usage dependence
1. Statement _dependence _on_a_method/ivaridble A statement s in a method m of a dass A is sad to be

u
dependent on Y which is either a method n or a vaigble v in a dass B, denoted by Ams P Y if and only if
any of the following holds:

i. Ams3Fi® Y
u
ii. $ meTMtd(A) suchthat AmsP A¢meand At 384® Y for aclassA' inP.
e
ii. $ stin mand avaidle w1 Var(A) such tha AmstP Ams Amst 3%i® Aw, Ams3Fa® Aw,

u
andAmstpP .

2. Method dependence on methodivarisgble Let A and B be two classes and Y be ether method B.n or varidble
u u

Bv. AmbP Y, ifandonlyif$ sinmsuchthat Ams P .

108

Concepts For Slicing-Object-Oriented Programs

Affect dependence:
1 Vaiable dependence on datement: A varidble v defined in a class B is sad to be dependent on a

a
datement s in a method m of a dass A, denoted by AmsP B.v if and only if any of the following
holds:

i. Ams¥#i® Bv
u
i. $ mé Mtd(A¢ suchthat Ams P A¢mt and Atmt 384® B.v.
e
ii. There exigss a daement s in m ad vaidlle wi Var(A) such that AmsP Amsg

a
AmsHL® Aw,Ams 3BA® Aw, and Amstb B.v.

2. Vaidble dependence on a method: A varidble v defined in a dass B is sad to be dependent on a

a a
method m defined in aclassA, denoted by AmP Bu if and only if $ sinm suchthat AmsP B.v.

Class dependence: Thefollowing dependencies are defined:

I
1 Dependence through inheritance AP B if and only if any of the following holds:
i. APu® B

ii. ThereexistsacassAdsuchthat AIDi Atand AC F® B.

2. wzmg B if and only if any of the following holds:
i. $milMtdA)ad$ nl Mtd(B) suchthatA.mIDu B.n.
ii. $ mil Mtd(A)ad$ v Var(B) such that A.mlfll‘J B.v.

a
3. Dependence through causing side effects AP B if and only if $ mi Mtd(A) and v T Var(B) such

a
that A.mP B.v.

For convenience in symbolic manipulation, al the basc and dependence rdations defined earlier are taken to be

r r
ireflexive. Also for smplicity, any rdation r, X 344® Y34® Z, XP YP Z denotes X 3%® Y, Y 3%® Z
r r

ad XP Y, YP Zrespectively.

50 TECHNIQUESFOR SLICING OBJECT-ORIENTED PROGRAMS

The origind concept of program dicing was introduced by Weiser [6, 7]. It refers to a technique of capturing
statements that are relevant to a particular computation, which $ to be specified by a dicing criterion. The resulting
program fragment is called a progran dice. Ever since the introduction of this concept of a program dice, various
dightly different notions of program dices have been proposed, together with methods of computing them. A
comprehensive survey of program dicing techniques can be found in [8].

For our purpose, we choose to extend the traditional concept of program dice to cater for program fragments that are
more amenable to the problem of maintaning object-oriented programs. Slicing object-oriented programs would
then involve capturing the various combinations of dependencies between classes as well as their components that
are conddered important to software maintenance. This section discuses definitions of several concepts of dices
that bear strong relationships with dependencies of interest.

Convention:
i. [A] refersto class A without any e ements removed fromiit.
ii. [AV] refers to class A with the set of variables V and removal of dements not involved in usng/defining
any variablesin V.

109

Yahaya, Al+awareh and Ghani

iii. [Am)] referstoclass A with only themethod mand the relevant associated declarationsin A.

iv. [AmV] refers to [Am] with the set of variables V and removad of dements not involved in
usng/defining any variablesinV.

v. [A.m/] refersto [Am] with the set of statement s S and the rdlevant associated declarationsin A.

Definition: An dementary dicing criteion isa4-tuple C=< d, E 1, E,, V > where,

1. d1 Dep(P),
2. Ey, E,1 Ent(P)andtheexpresson E; d E,isvalid.
3. VI Var(P).

The dicing criterion C can be used to specify the dependencies of interest that may exist between entity E; and E; in
P. A dice S with repect to a dicing criterion C=<d, E, B, V> denoted by Sice(< d, E, E,, V >), is a program
fragment of P that is obtained through severa dicing rules.

Dependencies can dso be caegorised according to levels. The firg caegory is class-level invalving a class to
another class. The second category is method-level involving a method or a statement within a method to another
method or variable in a dass. The find category is statement-level which is badcdly intramethod involving
datements within a given method. Slices, in turn, can aso be categorised according to such levels of dependencies
intendedto be captured.

The most generd type of dices are the classlevel dices, which capture classlevel dependencies. This type of dices

intuitively will exclude a lessr number of dements compared to the lower-level dices of dmilar form of criterion.
d

The genera form of dicing criterion for themisC=< P , A B,V > whered1 {i,u,a}.

Classlevd dicing based on dependence through inheritance is specified according to the following rule:

I
Slicing Rulel: IfC=<P ,A B,V>then Sice(C) isSIE E B where
i SIH[AL}

i 82:{[Y/(VCVar(Y))]1/A|1|> v b B}
iii. S3={[B/(VC Var(B)] } ifA b B

Slice(C) obtaned through rule 1 shows how any varigble in V is being used by the cdass A through dass B.
Essentialy, it will capture classes A, B and dl the intermediate classes linking A to B if A and B are reaed through
inheritance. However, if this is true, only the parts of B and intermediate classes that are related to varidbles in V
are captured.

Classleve dicing based on dependence through usage or causing side effects is specified according to the following
rue
d
SlicingRule2: 1fC=<P A B, V>where dT {u, a} then Slice(C) isSIE SE Swhere
i SIH[Al}

i S2:{[Y/(VQVar(Y))]1/2AFL; YFL; B}
d
ii. S={[B/V]¥V'T Vad"vi V', $m Mtd(A) suchthat AmbP By}

Slice(C) obtained through rule 2 shows how any variable in V is being used or affected by the dass A through class
B. Essentialy it will capture classes A, B and dl the intermediate classes linking A to B if A and B are rdated
through such dependencies. However, if this is true, only the parts of B and intermediate classes that are related to
variablesinV with respect to the dependence relation of interest are captured.

Method-levd dicing gives a more refined view of the use and affect dependencies between classes. They can be

obtained through four dicing rules. Before we will present these rules, we will present the only rule for performing
Satement -levd dicing.

110

Concepts For Slicing-Object-Oriented Programs

Definition: A definition-use chain from datements sto t in a given dass method is an orderad set of statements
e e e e
dy(s, t)=(S, X, %...Xn) WheresP x; P x,P ..x,P t suchtha def(s) C use(x) ! A& def(x) C
use(t) * A andfor every | satisfying (1<I£n), def(x.1) G use(x) * A&

e
SlicingRule3: IfC=<P ,Ams Amit,V >then Sice(C) is[Am/(S1E 2 E S3)] where

i. 81:{X|A.ms|§ xlg Amtand $vi (VG (use(x) E def(x)))}.

e
ii. S2={x|X dy,2wheeAmsP yb zP Amtad$x1 { SLCdy,2}}.

i S={Amg if$x (SLE) suchthat def(A.m.s) C use(x) * /E
iv {Amt}if$xI (SLE) suchthat def(x) C use(A.m.t)t /E

Sicing rule 3 captures the statements between A.m.s axd A.m.t inclusve, which involve in usng or defining any of
the variablesinV either directly or indirectly through def()-use() chains.

Findly, thefour dicing rulesfor performing method-leve slicing are asfollows:

u
SlicingRule4: IfC=<P ,Am,B.n,V >then Sice(C) isSIE SE SBwhere:
i, Si= {[Am]}

u u
ii. S={[Yk]%AmP YkP B.nad B.n3%a® B.vforsomevi V}

u
ji. S3={[BnM]suchtha Vi Vad" vi Vv, AmP B.nad B.n 3%4® Bv}

Slice(C) obtained through rule 4 shows how any variable in V is beng used by method Am through method Bn.
This dice captures dl the intermediate classes, which could form more than one path leading to Bn, if Bn
references any of the variables in V. If this condition is untrue, the dice will contain only A.m] which implies that
method m in dass A is not dependent on method n in dass B in order to reference any varigble in V. However, if
this condition is true, only a portion of B.n will be of interest and captured. No other method in B will be captured.

u
SlicingRule5: IfC=< P ,Ams B.n,V >then Sice(C) is SIE SE [VE Awhere
i, SI={[AmAAmMS]}

u u

ii. S2={[Yk]»2AmsP YkbP B.nad Bn3%i® B.vfor somevi V}
u u
ii. SE={[Bn.V'I Vad" vl V', AmsP BnandBnbP Bv}

k e
iv. = U Sice(<P Ams, Amsdef(Ams)>) whereAms 3%® yforsomeyl S2.
=

Slice(C) obtaned through rule 5 gives a more restricted view of the dependence of interest as ecified by rule 4
above. Specificdly, it seeks to show how any varigble in V is beng used by statement s in method m through method
B.n. This rule requires the resulting dice to capture the intermediate classes leading to B.n that are tracesble to Am.s
only, if B.n references any of the variables in V. In addition, this type of dice, through S4 will capture only the
rdevant intermediate Satements between A.m.s and other staements logicdly above it, from which A.m.s has
obtained this dependency indirectly.
d

SlicingRule6: 1fC=< b ,AmB.,_>where d1 {u, a} thenSlice(C) isSIE QE 3 where

i. Sl={[Am]}

u d
ii. S2={[Yk]2AmbP YkP Bwv}

d
iii. S3={ [B/{\}]} if AmP Bv

m

Yahaya, Al+awareh and Ghani

d
SlicingRule7: 1fC=<bP ,Ams Bv,_ >thenSice(C) isSIE SE SESAwhae
i, Si={[Am/{AmS]}

u d
ii. S={[YkK[YAmsbP YkP Bv}

d
iii. SE{[B/{v}]}ifAms P B.v.
iv. Ifdisuthen
k e
A= U Slice(<P ,Ams, Amsdef(Ams)>) where Ams, 34® y forsomey 1 2.
i
Elseifdis athen

k e
A= U Sice(<P ,Ams Ams, def(Ams)>) whereAms, 3#4® y forsomeyl S2.
=1
Slice(C) obtained through rule 6 and 7 above further gives a more restricted view, in the sense that the main interest
is how a particular variable Bv is used or affected by satement Am and A.m.s respectively. In this case, even if

d d
Am b By (for rue 6) and AmsbP By (for rule 7) is trug, [B/ {v}] may not indude any method in B if the
dependency is through direct access on Bv by a statement in a method in S2. In C++, Bv must be either protected
or public. On other hand, unlike rule 4 and 5, portions of more than one method in B may be captured. For rule 7,
like rule 5, it will capture only the relevant intermediate statements baween A.m.s and other Statements logically
above or bedow it when the dependence reaion d is u or a respectively, from which Am.s has obtained this
dependency indirectly.

60 ILLUSTRATION OF USE

The concept proposed in this paper can be applied within software maintenance tasks particularly in understanding
the dependencies among dements of object-oriented programs. We foresee the normad approach would be to
formulate meaningful queries related to various aspects of interests. These queries are, in turn, transformed into
various dicing criteriathat will be used to obtain dices that can be anadysed and utilised for maintenance purposes.

Consider the program in Appendix A astheinput program that needsto be diced.

Example 1: Sicing using criteria
e

C = Sice (< P , Discount.increase.1, Discount.increase.9, {rate}>) will involve the following steps according to
Rule 3:

1 S1={221,3,31,5}

2 The maximad definition-use chains between statements 1 and 9 involving any dsatement is Sl ae

{(21,5,6,7),(31,5,6,7)}

3) S2={21,31,5,6,7}

4) S3={1} sncedef(1) Cuse(2) * A

5) S4={9} snce def(5) Cuse(9) * A

Concepts For Slicing-Object-Oriented Programs

e
Therefore, based on the above computations, Slice (< P , Discountincrease.1, Discount.increase9, {rate}>)
indudes the following:

1 status=Mylnput.readString();

2 if(status=="student”)

11 rate = 20/100;

3 if(status=="pensoner”)

31 rate = 17/100;

5 node.Total=node. Total -node. Total* rate;

6 discount=Total - node.Totdl;

7 System.out.printin(*discount :” +discount);

9 System.out.printin(“ Total After Discount:.” + node.Total);

Fig. 1: Reault of Slicing

u
Exange 2 Computing Sice (< P, TestComputeArea.main, circlefindArea, {radius} >) will involve the
following steps according to Rule 4:
1) Sl1={[TestComputeArea.main]}
2) S2={} sincethereare nointermediate classes through usage relaionships.

3) S3={[circle.findArea/{radius}]} Snce TestComputeArea.main 3%4® circlefindAreaand
circlefindArea 3%4® Circleradius.

u
Sice(< P, Test ComputeArea.main, circle.findArea, {radius} >) obtained based on the above steps is represented
as the boldfaced portion of the origina program in Appendix A.

70 CONCLUSION

This paper discusses concepts rdlevant for dicing object-oriented programs. In the case of object-oriented
programs, data and control dependencies are no longer sufficient for supporting maintenance tasks. Class and
component dependencies are more natural in supporting the process of understanding the structure and behaviour of
objed-oriented programs. Based on the identified dependence relations, severd dicing rules have been developed
for dicing object-oriented programs. We aso highlight the potential application of this new dicing approach by
providing an illusration with two examples. We leave the presentation of dices as a separate concern, athough our
present inclination is to present them as the highlighted parts of the origina program.

REFERENCES

[1 D. Binkley and K. B. Galagher, “Program Slicing”. Advances in Computers, Vol. 43, 1996, pp. 1-50.

[l S Howitz , T. Reps, and D. Binkley, “Interprocedurd Slicing Using Dependence Grgphs’. ACM
Transactions on Programming Language and System, Vol. 12, No. 1, January 1990, pp. 26-60.

[3 K. H. Soo and Y. R Kwon, “Restructuring Programs through Program Slicing’. International Journal of
Software Engineering and Knowledge Engineering, Vol. 4, No. 3, 1994, pp. 349-368.

[4 A. D. Luda and A. R. Fadino, “Undersanding Function Behaviours Through Program Sicing”, in Workshop
on Program Comprehension, |EEE Press, 1996.

[5] M. Weiser, “Programmers Use Slices When Debugging’. Communications of the ACM, Vol. 25 No. 7, July
1982, pp. 446-452.

[6] M. Weiser, Program Sices: Formal, Psychological, and Practical Investigations of an Automatic Program
Abstraction Method. PhD Thesis, University of Michigan, Ann Arbor, 1979,

113

Yahaya, Al+awareh and Ghani

[7] M. Weiser, “Program Slicing”. |EEE Transactions on Software Engineering, Vol. 10 No. 4, July 1984, pp.

352-357.

(8] F. Tip, “A Survey of Progam Slicing Techniques’. Journal of Programming Languages 3 1995, pp. 121-
189.

BIOGRAPHY

Nor Adnan Yahaya obtaned his PhD in Computer Science from Northwestern Universty, USA in 1987.
Currently, he is a pincipa researcher a Tdekom R & D Sdn. Bhd. He is dso an Adjunct Associate Professor at the
Faculty of Computer Science & IT, Universiti Putra Mdaysa. His research areas include Software Engineering
and IT Security.

Hamed J. Al-Fawareh obtained his PhD in Software Engineering from Universti Putra Malaysia Currently, he is
a lecturer in Computer Science Department, Zarka Private University/Jordan. His ressarch areas include Software
Engineering, Software Maintenance, Program Slicing, and Object-Oriented Programming.

Abdul Azim Abd. Ghani obtaned his PhD in Software Engineering from Strathclyde Universty, UK. Currently,
he is the Dean of the Faculty of Computer Science and IT, Universti Putra Maaysa His research aress include

Sftware Engineering, Software Mdrics, and System Engineering

APPENDIX A: A SAMPLE JAVA SOURCE CODE

public class Mylnput {

public static int readint() { }
public gtatic double readDouble(){ ... }
public static String reedString(){ ... }

}
public class Cylinder extends Circle {
private double length;

public Cylinder() {
1 length = Myl nput.resdDoubl&();
}
public Cylinder(doubler, doublel) {
2 length=1;
}
public double getLength() {
3 return length;
}
public double findVolume() {
4 return findArea()* length;
}

public class TestComputeArea {

static douderadius;

static double areg;

static double Pl = 3.14159;

public static void main(String[] args) {
System.out.printin(" Enter radius");
radius = Mylnput.readDouble();
CirclemyCircle = new Circle(radius);
System.out.printin(myCirclefindArea());
Cylinder myCylinder = new Cylinder();
System.out.printin(myCylinder findArea());

OO WNPE

14

[EEY

w N

~N O

10
11
12

[

©CoO~NO O WWNNPEFP
'_\

System.out.print(myCylinder .findVolume());

}
}

classCircle{
privatedoubleradius;
String color;
static double weight;
public Circle(doubler, String ¢, doublew) {
radius=r;
color =c;
weight = w;
}
public Circle(doubler, String €
radius=r;
color=c;

}
public Circle() {
radius= Myl nput.readDoubl &();
color ="white";
weight = 1.0;
}
public double getRadius() {
return radius;
}
public doublefindArea() {
color =“Blué’;
weight = 10;
returnradius*radius*Math.Pl;
}
}
class Discount extends Salary{
protected float rate;
float Total, discount;
String status,
void increas() {
status = Mylnput.readString();
if(status == “student”)
rate = 20/100;
if(status=="pensoner”)
rate = 17/100;
Tota = node.Totd;
node. Total=node.Tota -node. Total* rate;
discount = Totd - node.Tota;
System.out.printin(*discount :* +discount);

System.out.printin("Total Before Discount: " + Totd);
System.out.printin(" Total After Discount: " + node.Total);

115

Concepts For Slicing-Object-Oriented Programs

