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ABSTRACT 
 
Network processing is becoming increasingly challenging to the network architects and engineers in terms of 
hardware design and application development due to an increase in packet processing complexity and constantly 
evolving protocol standards.  New inventions in the transmission medium such as DWDM, SDH and GigaEthernet 
increase bandwidth capacity of the network.  Meanwhile, more network-oriented applications are becoming 
popular.  All these require faster and programmable packet processing capabilities in the inter-connecting network 
nodes.  Packet processing technology of network equipment is seeing a migration from ASIC solutions to NP.  In 
this paper, we review the latest technology of NP, which has been designed today for next generation networks. NP 
has to adapt to rapid protocol standards change and perform at wire speed like ASIC solutions, using considerably 
easier programmable NPs besides maintaining short time-to-market and time-in-market which is essential to meet 
tomorrow’s network demand.  This paper discusses the trend in NP architecture, packet processing classification 
functions and the challenges ahead for the network processors architecture.  The authors feel this is the first survey 
paper on NP. 
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1.0 INTRODUCTION 
 
Migrating from the previous telecommunication network which was more for voice to the Internet for all types of 
communications, audio, video and data regardless real time or non-real time is a major turning point in the 
telecommunication industry.  Introduction of various new hardware, software and protocol advancement in the 
network field such as optical fiber, GigaEthernet, Dense Wavelength Division Multiplexing Dense Wavelength 
Division Multiplexing (DWDM), Synchronous Digital Hierarchy (SDH), faster microprocessor and integration of 
voice into packet communication keeps the Internet traffic growth ongoing.  This requires enormous bandwidth, 
faster and more sophisticated packets processing at interconnecting nodes, which decide the destination of each 
packet on the Internet.  In order to support such a complex need, many companies including Intel [5], IBM [7], 
Broadcom [11], MMC [8] etc. are introducing new programmable network processors.  Previously used ASIC 
(Application Specific Integrated Circuit) is not preferred due to its long and expensive hardwired design and 
development cycle time which does not have programmability feature.  Furthermore, it imposes a higher risk of 
reversibility for protocol changes.  The transition from ASIC to NP solution for network packet processing 
equipment is deemed possible due to the above reasons.  High speed packet processing is becoming almost 
impossible by a single chip solution. 
 

Table 1: Average packet size processing time requirement 
 

Media Speed 44 bytes packet 
processing time 

155Mbps OC-3 2.3us 
622Mpbs OC-12 514ns 
2.5Gbps OC-48 128ns 
10Gbps OC-192 32ns 
40Gbps OC-768 8ns 
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At OC-768 line rate, assuming packet size of 44bytes, packet arrival rate is about 114 x106 packets per second that 
need to be processed.  If the line-rate is to be met at any time, each packet should be processed within 8ns. It has 
been estimated that in average each packet requires 500 instructions such as address look-up, classification, 
encapsulation and transposition.  In conclusion, for OC-768 line rate, the network processor requires 57 GIPS, 
which at least for the moment cannot be processed by a single processor. 
 
This paper reviews the existing NP technology with state of the art solutions and explores further the challenges 
ahead for the specific building block of NP.  All the major building blocks of a NP is detailed and discussed by 
comparing different vendors’ solutions in terms of their architecture, design and implementation if available. 
Research articles [4, 20, 23, 24, 25, 26, 35, 36, 37, 38, 39] in this area were explored with industrial NP solutions for 
comparison purposes.  Section 2 generalises today’s NP architecture.  Section 3 details all major component 
architecture of a NP.  Network packet processing steps are explained in Section 4.  Simple implementation of table 
look-up is discussed in Section 5.  NP benchmarking effort is described in Section 6.  Section 7 discusses the 
industry standardisation work.  Finally, Section 8 concludes the paper and describes the direction of our future 
research work. 
 
 
2.0 TODAY’S NPS GENERAL ARCHITECTURE 
 
There are many NPs [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21] with distinguishable architecture designs to suit specific 
network configuration, types of packets being processed, speed of the network physical layer, packet processing 
approach such as parallelism or pipelining, multithreading capability, co-processor support, memory types with 
various access speeds, different types of data flow and queue management techniques either by hardware or 
software approach.  These NPs are composed of various components with different configurations depending on the 
design specification.  However, the common objective is to process network packets for the particular network, 
maintain wire-speed if possible and give programmable flexibility to adopt rapidly evolving protocol definitions. 
Common components of a NP are:  

i) Configurable or programmable processing elements (PE) with or without multithreading capabilities. 
ii) Local cache memories with different access speeds. 
iii) External memory interfaces with different access speeds and sizes such as SRAM and SDRAM. 
iv) Function specific co-processors or ASICs such as look-up. 
v) Packet classifiers and queue managers, high-speed internal bus for component connectivity. 
vi) External network connection bus and interfaces. 
vii) Switch fabric support. 
viii) Connection to external general processor. 
ix) Hardware specific instruction set. 
x) Compilers. 
xi) Debugging and programming tools with some GUI support. 

 
Fig. 1 illustrates the above-mentioned features in a NP. NPs are usually supported by Control Plane Processor (CPP) 
for control plane packet processing whereas General Purpose Processor (GPP) for Management Plane packet 
processing is optional. CPP and GPP have their own supporting units that enable them to work independently from 
other components of NP.  Communication interfaces between these processors and data plane processor are present 
when decoupling of tasks is necessary. 
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Fig. 1: General Network Processor Architecture 
 
In summary NP can be classified as a RISC processor which has been specifically architectured to process network 
packets with or without support of other peripheral processors such as GPP or CPP. 
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2.1 Classes of NP 
 
Network processors reside in four different network sectors, namely Customer Premises or Home Network (CPHN), 
Access Network (AN), Edge or Metro Network (EMN) and finally Core Network (CN) [25].  Combination of the 
above common components will vary based on the particular sector that NP resides.  CPHN NP does not require 
high processing power since the required bandwidth is low, ranging from 1Mbps to tens of Mbps but less than OC-
3.  Such NPs also do not require Management Plane, additional interface units, switch interface or special hardware 
units.  They perform service termination functions and act as routers, layer three to layer seven switches, Storage 
Attached Network (SAN) Servers and also Wireless LAN packet processing.  There are many NPs for this market 
segment such as MMC nP7020 [8], Intel IXP22x [5] and Vitesse IQ2100 [21]. 
 
Some larger organisations may require a much larger bandwidth for switching and routing, up to 1Gbps/OC12 such 
as Gigabit Ethernet.  This can be categorised as AN sector where data and voice traffic merge. Service aggregation 
by small Internet Service Providers (ISPs) happens in this sector.  NPs from Intel IXP12x0 [5], Vitesse IQ2102 [21], 
Broadcom BCM112x [11], and MMC nP7xx0 [8] fit into this market segment. EMN involves multiple city 
connectivity or larger national ISP connections.  IP service switching, Quality of Service, bandwidth aggregation, 
voice or data gateways and Service Level Agreement switching are some of the supported services in this sector.  
This requires connecting bandwidth, ranging from 1 Gbps to 2.5Gbps/OC-48 and equipment such as DSLAM, 3G 
wireless Node-B and RNC use NPs to perform their network functions.  IBM Power NP4GS3 [7], Motorola C-Port 
C-5 [14], Agere Payload Plus [10], Vitesse IQ2132 [21], Xelerator X10x [12], and MMC nP7250 [8] and Intel 
IXP2400 [5] are some examples of NP in this segment. 
 
CN connects multiple regions and countries for the Internet traffic exchange.  This sector also includes ISP exchange 
points.  It performs complex functions such as IP service switching and routing, Quality of Service, bandwidth 
aggregation, voice or data gateways, MPLS and Service Level Agreement switching for the highest bandwidth 
requirement.  2.5 Gbps to multiple 10Gbps/OC192 bandwidth equipment reside in this category.  Some of the 
available NPs in this market segment are from MMC nP7510 [8], Intel IXP2800 [5], Bay Microsystems Montego 
[9], Lexra [6], Broadcom BCM1250 [11], Agere Payload Plus 10G [10] and EZ-Chip NP 1[13].  The bandwidth 
requirement will continuously grow in the future and higher speed NPs such as OC728 will be available very soon.  
Technology advancement such as SDH and DWDM will pave the way for this realization.  
 
Serving very high bandwidth network or merging network points require immense computing resources.  This can 
be resolved by cascading NPs by processor pooling (PP) [1].  Another solution is channel specific Distributed 
processor (DP) [2].  Motorola C-5e [14] is one example of the second method. DP decentralises the processor to 
each channel where the packet processing activities take place.  In order to meet wire-speed processing rate, in PP 
the processors are pooled together to handle the network packets from any channels.  As the processing power 
requirements increase, the number of NPs can be augmented.  This first approach allows internal NP scaling without 
any changes to the attached external interfaces.  Processing functions will be distributed among all the NPs by 
adopting functional or context pipelining with parallel techniques in mind.  This is suitable if similar processing 
techniques are required with less predictability for the packet processing.  Fig. 2 illustrates both these architectures. 
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Fig. 2: NP organisation in packet processing units 
 
The second method brings packet processing near to the source, hence allowing channel dedicated packet processing 
with direct links to the external interfaces.  Channels with varying processing needs are suitable for this technique.  
Packets that were destined to other channels will be forwarded via interconnecting bus to be processed and en-
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queued for transmission.  The combination of both methods is also possible to provide packet-processing flexibility 
in turn for higher speed. 
 
Generally NPs use shared bus for inter-component communication.  The communication is required for packet 
movement such as for packet pulling from input queue or packet pushing to output queue, memory reading and 
writing operations, operation of specific ASIC functions to the packet such as encryption, decryption, cyclic 
redundancy check (CRC) and etc.  Tens of GHz transfer speeds are required to ensure the data movement within the 
components. Assuming, for any given 44bytes packet size at OC-768 line rate, functions such as classification, look-
up, translation, encryption and error checking executed with average 100 memory access per packet, for bus width 
of 16 bits, then 2500 GHz speed is required.  By distributing the load to a larger number of nodes such as 8 or 16, 
the speed requirement will reduce to tens of GHz, which is feasible to achieve at today’s technology.  Considering 
the future limitation, octagon architecture [3] has been proposed compared to current bus architecture.  It has been 
demonstrated by STMicroelectronics [4] that inter-processor or component communication speed requirement can 
be met by this architecture.  However, most of today’s industries’ NPs are connected via bus architecture. 
 
 
3.0 NP SPECIFIC FEATURES 
 
The following section gives an in-depth explanation on current trends and design approaches and challenges for the 
major components of a NP.  These components play an important role in NP packet processing function and 
behavior. 
 
3.1 Memory Requirement 
 
Memory has always been an important factor in any network equipment design due to the cost.  Faster memories 
cost more and in return give better access time.  An OC-12 line rate NP will handle 1.77 million packets per second 
if 44 bytes size of IP packet is adopted.  Assuming that the line rate is maintained and packets are being processed at 
least at arrival rate per channel, approximately 80 MB of memory space is required.  If 15% headroom is given to 
other memory storage, then 92 MB of memory will be used.  For four channel support, memory requirement 
quadruples to 368MB.  OC-192 line rate requires more than 5 GB memory space for four channels which is costly.  
Fig. 3 illustrates the minimum memory required for various line rate per packet size with the above assumptions.  
Thus, an effective and efficient memory management is necessary to ensure cost effective network products. 
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Fig. 3: Memory requirement and packets being processed at various line rates 
 
Large memory requirements are unavoidable due to the complexity of packet management processes within the NP.  
For example, TCP flow control packets create a ping-pong scenario where they need to be maintained for each flow, 
to ensure reliable transfer.  Metering and time-stamping activities to ensure QoS per flow traffic require packet 
storage.  Advanced queuing algorithms implementation per flow in the buffer to maintain Class of Service (CoS) 
and/or Quality of Service (QoS) is essential.  Flow control is also important for a network node that handles many 
channels to ensure fairness among all the ports and to ensure that congestion is avoided at all times. 
 
Algorithms such as Deficit Round Robin (DRR), Weighted Random Early Detection (WRED) and Forward Error 
Detection (FED) have to be implemented to manage large amounts of packet flow to be received, stored, processed 
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and transmitted out by the router.  Services such as ATM, require strict quality of service, while maintaining 
minimum latency and jitter for guaranteed services.  Besides that, the deeper the packet processing is within a 
packet, such as layer 5 filtering, more memory will be required since multiple layer headers need to be stored before 
processing takes place at the payload.  As such, the above assumption of memory space may be insufficient, if more 
complex tasks need to be performed by a NP. 
 
NP requires memory to store incoming or outgoing packets for short/long term, executing codes that were developed 
to run routine functions, temporary data and permanent data.  Incoming or outgoing packets are usually stored in 
buffers before they are moved to long-term memory.  Registers are examples of short-term memory and xDRAM is 
a long term memory.  Long term memory is used to store packets that need to be processed further.  Data structure 
such as queues and link-lists are used to manage this complex memory region for best utilisation.  SDRAM, 
DDRAM and QDRAM are used for storage purposes.  Developed code that needs to be executed by the PE is 
normally stored in code store memory.  Machine instruction sets which are usually short and simple, are used for 
data movement.  Temporary variable data which are passed from one function to another or from one component to 
another such as intermediate results of processing functions, are stored in cache, scratch, CAM and TCAM 
memories. 
 
Assuming that there is enough memory space, memory access rate is still an issue. OC-192 line rate requires data to 
be accessed and processed at 40 Gbps.  Today’s commercial DRAM only supports hundreds of Mbps which is far 
below the required speed.  As such, sophisticated memory interleaving techniques that use context pipeline memory 
access coupled with distributed memory architecture with multiple memory units are necessary to fulfill this 
challenging requirement. 
 
A small but high speed specialised memory co-processors can be used to store frequently accessed data.  This will 
increase overall performance of the NP besides ensuring short and predictable data access latency.  The memory 
management of co-processors such as allocation, de-allocation, initialization, insertion, deletion and modification 
are performed by hardware.  The most time consuming activity of a processor is related to memory transfer, read or 
write.  PEs can assign these tasks to co-processors and switch to other useful tasks using hardware multi-threading 
feature.  This is generally known as latency hiding. 
 
3.2 Queue Management and Switching 
 
Queue control and management of network equipments such as routers and switches are a continuous challenge. 
Gigabit and Terabit per second equipments have multiple ports and multistage fabrics which require tens and 
hundreds of switching chips to manage input and output network packet queues.  NPs have multiple ports that 
increase the number of packets received and processed from the network.  Higher layer packets such as TCP require 
packet order management which is time and resource consuming.  TCP also requires re-transmission of lost packets 
before it can be re-ordered, creating an oscillating condition.  Order management requires the packets to be ordered 
before being processed and transmitted at output queue.  Protocols such as ATM, maintains cell sequences making 
packet processing much simpler compared to IP.  This raises two questions.  How parallelism can be implemented 
with this requirement?  How queue management can be improved?  Generally, queue management is done at input 
queue, output queue or combination of both.  Many studies have been conducted in queue control and management 
for high-speed equipments [32] which are generally used in NPs. 
 
NPs will have packets arriving at the input interface that need to be classified and queued before being further 
processed.  NP implementations adopt hardware and/or software support for classification and queue management 
for guaranteed performance.  Queue management can be done either by flow or by aggregation.  It is necessary to 
ensure efficient queue management mechanisms are in place for packet processing rate control, fairness control and 
congestion avoidance [26]. 
 
3.3 Packet Processing Functions 
 
Network processing functions can be classified based on the operation types that are being performed on the 
packets.  They can be divided as data plane functions or control plane functions.  The data plane functions 
categorisation are as follows: 
 
i) Classification 
This is the first and most common function performed on the packets.  Based on certain field or fields of the packet 
and rules, packet will be classified for the necessary processing action.  For example, in IP packet, the source and 
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destination addresses are examined together with other fields before forwarding is done.  Routing table entries 
within the NP memory is used as a rule to decide the next hop for the packet.  In Asynchronous Transfer Mode 
(ATM), cells are checked for the header field information such as VPI and VCI against the look-up table before 
deciding which interface the cell is to be switched to.  Content inspection is one form of classification function 
which can be performed from Layer 2 until Layer 7 of Internet Model [23].  However, as the depth of classification 
increases the overall performance of NP will decrease due to the dramatic workload increase. 
 
ii) Transformation 
The PDU content will be either replaced, inserted, deleted or modified before retransmitted.  Operations such as 
protocol translation, segmentation & reassembly and PDU encapsulation & decapsulation are few examples of these. 
 
iii) Stream Processing 
This function includes receiving the packets and storing it temporarily for traffic shaping the stream to meet certain 
criteria.  Traffic shaping, marking and metering are done to ensure QoS (Quality of Service). 
 
iv) Queuing and Manipulation 
Received packets need to be queued in different queues for further processing.  During this processing stage, packet 
may be dropped in order to satisfy certain rules.  For example, packet filtering based on header information requires 
foreign packets to be dropped. 
 
v) Encryption & Decryption 
Awareness in packet level security (IPSec), requires each packet to be encrypted.  Complexity of this activity 
requires hardwired solution for this specific function to ensure wire speed packet processing. 
 
vi) Error Detection & Correction 
Errors in the packets need to be identified and corrected.  For example, CRC (Cyclic Redundancy Check) has to be 
performed for each packet if any content in the header is changed. 
 
vii) Compression 
Bandwidth conscious protocols such as wireless protocol (PDCP in 3G stacks) require header compression to be 
performed at the routers to optimise the bandwidth usage. 
 
Control and Management Plane functions can be categorised as follows: 
i) Error and Informational Message 
Packets that carry information or error messages that need to be processed by the node will be processed by the 
GPM (For example, ICMP error messages). 
 
ii) Control and Management Message 
Control and management packets like OAM cells in ATM will also be processed by the control plane using GPM, 
since they do not require fast packet processing capability. 
 
iii) Statistics & Monitoring 
Packets statistics and monitoring such as dropped, lost, error and processed packet will be maintained by the control 
plane.  
 
Despite having a tighter timing window to process a single packet as shown in Table 1, NP has to perform the above 
functions for each packet.  For example, secure IPv6 supported application in 3G communications requires almost 
all the functions to be performed in the underlying router.  The additional burden of supporting multi-protocols on 
the same NP poses a greater challenge to NP in packet processing.  Thus, in programmable NP, besides having high 
frequency processors, packet centric programming technique, optimised compiler, functions partitioning, processing 
techniques, optimal resource utilisation and optimised algorithms are important to ensure wire-speed packet 
processing. 
 
3.4 Instruction Set, Programming Language and Compilers 
 
NP requires efficient bit-stream-oriented programming language and instruction sets to analyse, modify and move 
data within given nanoseconds between many memory regions to meet the line-rate performance [25].  The 
challenge is to have a language with a short list of instruction sets which is general enough to code any 
communication protocols, algorithms and problems.  A common programmer with a short learning and 
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implementing cycle time must also easily understand the language.  A good compiler will be able to produce a small 
amount of assembly codes without compromising the execution quality.  NP products have a high pressure to have 
short time-to-market thus reducing development cycle time.  At the same time, short time-in-market need be 
maintained for monetary returns.  Usually, the development stage does not exceed more than 6 months for a specific 
NP product, which has substantial packet processing capabilities and features. 
 
Simplified C and microcode [5] or picocode [7] are famous approaches taken by many NP vendors to ensure their 
success in market penetration.  The programming language and reduced instruction sets are very specific to their 
product and close to the machine instruction codes such as assembly.  This implies that the programmer has to be 
familiar with the hardware before doing the programming.  Some NPs can be programmed with higher-level 
languages such as C language to reduce the effort in picking-up a machine specific language.  This naturally 
produces more overhead while compiling and results in larger binary codes.  Application specific [21] or hardware 
specific [16, 17] instruction sets are not viable solutions for NPs.  This is because NP is a programmable unit.  
Furthermore, the rapid and constant evolving standards and protocols in the telecommunication field requires a 
programmable solution.  Applications that are being supported by NP will change from one network sector to 
another while the hardware co-processors will change from one NP family to another. 
 
Instruction set or programming languages development process should consider and exploit the generic packet 
features such as small in size, bit and bytes in length, vary in size, with two portions of data field header and 
payload, easily modifiable, comparable and requires simple arithmetic operations.  Fig. 4 shows the packet header or 
payload that does not fit the width of the memory of register.  Thus, operation onto the data becomes difficult and 
requires more cycles if it is not aligned. 
 
Packets which arrive at different rates and sizes need to be moved from the receive buffer to long-term memory.  
Additional header may be required to mark and move the packet from buffer as described in the beginning of 
Section 3.0.  Different sizes of packets need to be moved regardless of the bus width size to different memory 
regions.  For example, Fig. 4 shows general memory format which can be SRAM, SDRAM, registers or cache with 
different widths.  Different memory types require different access methods, widths and cycles.  Moving reassembled 
data from long-term memory to other functional components such as decryption or encryption units for further 
packet processing such as look-up, swapping, comparing, transforming and substitution requires different instruction 
sets.  Finally, the processed packets may be transmitted to different outgoing ports or even different protocols that 
have different packet formats.  These demanding tasks need to be performed by the instruction sets. 
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Fig. 4: Variable size packet or data organisation in memories and registers 

 
Having an efficient compiler is as important as having effective NP instruction sets and programming languages.  
Coded instructions need to be translated to machine understandable codes that are small and non-redundant.  
Compilers have a front-end portion which does source code analysis, generation of intermediate codes, optimisation 
and garbage collection, while backend does the intermediate code to actual NP specific assembly code mapping.  
The backend function is important since it will decide the final code creation, register usage, register associated 
modes and memory allocation for the code.  Many researchers are making an effort [18, 20] to develop good 
compilers and instruction sets that can produce hand-written quality of assembly code for any given high-level 
language.  This will always be the constant ultimate challenge for NP. Some of researchers have implemented these 
tools on their NPs and proven its efficiency [4, 6, 15, 19].  Moving away from error prone and time-consuming 
assembly programming is extremely important for reducing the development cycle. 
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3.5 Software Architecture and Programming Tools 
 
NP software architecture as illustrated in Fig. 5, is loosely integrated and specific to different types of processors 
that are being supported.  Adopting Fig. 1, NP has Data Plane Processor (DPP) and CPP/GPP with different 
software architectures.  DPP has its own instruction sets, which are machine specific and tightly coupled with it’s 
own system architecture.  Compiler, linker and assemblers are provided to construct machine codes as programmed 
by programmers using the instruction sets and DPP programming languages.  These machine codes will be used by 
the PEs in the NPs for code executions.  DPP protocol stack such as AAL2, AAL5, IP etc. for NPs need to be built 
using DPP programming languages.  Various applications can be built using these protocol stacks. 
 
CPP runs on RTOS (Real Time Operating Systems) such as Linux [33] or VxWorks [34].  If there are any GPP 
present in NP, then they will be using a normal operating system for less critical packet processing functions.  CP 
protocol stacks such as SCCP, SCTP, SIP etc. are developed for a specific network application using higher 
generation languages such as C and C++.  Third party API (Application Programming Interfaces) and NP Services, 
which are supported by RTOS on CP, can be used to speed-up network applications development.  The CP and DP 
will communicate via API.  Simulators and debuggers are important to the developers especially for DP 
programming which need to be verified for hardware mapping of the codes.  Simulators allow developers to develop 
various network applications with different protocol stacks and test them on the NP.  Performance estimation and 
bottleneck of a specific design can be done using simulator.  On the other hand, debuggers allow developers to 
understand, rectify and visualise errors in network protocol design with good GUI tools.  These supporting tools are 
essential for short software development cycle. 
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Fig. 5: General NP Software Architecture
 
FlexWare [4] is an example of industry standard embedded software development architecture which has the 
explained tools for NP specific application development.  Many other NP vendors have similar software architecture 
in general and provide the above-mentioned tools for easy programming [12]. 
 
3.6 Processing Elements (PE) 
 
PEs as shown in Fig. 5, are being used in many commercial products with different name references such as 
microengine [5], processing element and etc.  They are the heart of programmable NPs and are found in variable 
numbers.  Generally, they are specialised RISC with dedicated fast access local memory, interface to external 
SRAM, DRAM memories, ALU (Arithmetic Logic Unit), executable code store, co-processors and hardware 
multithreading support. 
 
As packets arrive at incoming memory, they will be stored before being processed by the PE.  PE will execute 
instructions based on the code, which is stored in the Code Store.  If required, co-processor support for example 
encryption/decryption, CRC check functions are locally available to increase the processing efficiency based on the 
PE design.  Local high-speed cache is available to store intermediate data or information.  Data from external 
memory will be accessed via External Memory Interfaces and stored in local cache for further usage.  For example, 
if table look-up is needed and the table is stored in external memory, the data will be fetched and stored in the local 
cache and replaced using techniques such as LRU according to the requirement.  Access to other external co-
processors such as a hashing unit is available via External Interfaces at PE.  ALU performs the usual fetch, decode 
and execute of the operation using op-codes from the code store.  Finally, the processed packets are stored in 
outgoing memory to be queued, further processed if necessary and transmitted.  Fig. 6 shows an example of PE with 
the functional units. 
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Fig. 6: General PE Architecture 

 
Being the core functional unit in NP, PE comes in different processing speeds, ranging from 166MHz to 1.4GHz at 
today’s NPs [5, 6, 7, 8, 9, 10, 11, 12, 13, 21].  The organisation of PEs in NPs varies from vendor to vendor.  
Usually, PE organisation is specific to their NP design with one of the following modes independent, clusters or 
scattered.  High-speed data and control bus is necessary to handle the vast data and to control packet transfer within 
PE, with external component to PE and between PEs.  The numbers of PEs in NPs vary from vendor to vendor and 
range from a single PE up to tens of them [5, 6, 7, 8, 9, 10, 11, 12, 13, 21]. 
 
Multithreading is local to a PE and further discussed in Section 4.10.  This allows parallelism and pipelining for 
packet level processing besides latency hiding for memory accesses. 
 
3.7 Parallelisation and Pipelining 
 
Adding multiple NPs is becoming a common trend in high-end network products to meet the ever-increasing 
demand for high-speed packet processing at wire rate such as OC-48 and OC-192 [26].  This will be a continuing 
trend unless there is a drastic change in network product design.  Parallelisation can take place at micro or macro 
level at NPs.  For a particular NP, having multiple PEs and multiple processing units (for example Lexra [6] and 
Intel IXP2800 [5] have 16 PE in a single NP) is a macro level parallelisation.  While multiple threads within in a PE 
is a micro level approach (for example there are 8 threads in each Intel IXP2800 and Lexra NPs).  Some NPs also 
allow the packets to be processed by different processors, for example Control Plane Processor for control packets, 
CISC Processor for statistics data and NP itself for data plane packets. 
 
Network packets are smaller with different processing requirements.  The ‘n’ streams of packet data are easily 
received, processed, moved, stored and transmitted.  On arrival, the classification step possibly can separate packets 
based on the type (e.g, IP, ATM) then the packets are put in a queue to be processed in parallel fashion.  Multiple 
PE, co-processor and processing units act in either SIMD (Single Instruction Multiple Data) or MIMD (Multiple 
Instruction Multiple Data) to process the network packets.  Generally all IP streams require look-up and forwarding 
which is straightforward and works in SIMD fashion.  Complex processing and time-consuming task sequences such 
as classification, reassembly, look-up, time-stamping, metering, data transformation, assembly, etc. can be executed 
in MIMD fashion using multiple PEs.  Fig. 7 demonstrates the SIMD and MIMD approach for single or multiple 
functions on various packets. 
 
Pipelining is another approach to enhance parallelism in NP and is widely used today [12].  ‘n’ number of packets 
can be broken in to ‘m’ processing steps and processed.  Deep pipelining structure can be executed by utilising 
multiple PEs.  Each pipeline stage will execute the packet and pass them on to the next stage. At any time there will 
be ‘n’ x ‘m’ processing activity at the NPs.  Pipelining can be done either in SIMD or MIMD fashion.  In SIMD, 
every PE or thread performs the same function on different packets while in MIMD, every PE or thread performs 
different functions on different packets.  In some cases, combination of SIMD and MIMD is possible. 
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Fig. 7: SIMD and MIMD implementation either at NP, PE or Thread level for functions against packets 

 
Having said that parallelism and pipelining helps to improve processing capabilities, there are hidden costs to its 
implementation too.  If flow dependent packets such TCP and re-assembled RLC packets in 3G network at Node-B 
are being processed, pipelining will fail and packet dependency will occur.  So inter PE or thread communication is 
important for information exchange.  Shared memory is required to process these packets.  Memory synchronisation 
then becomes an important element in packet processing and may consume valuable processing time.  Inter-
processor communication may also be required if tasks between NPs need to be synchronised.  As such, designing 
and writing software for NPs becomes more difficult than for CISC computers. 
 
The ultimate aim of parallelism is to increase the speed-up as stated by Amdahl’s Law.  If the number of processing 
elements increases by a factor N, then the time spent to perform the task decreases by a factor 1/N.  However, in 
practice very few programs achieve this level of scalability in network packet processing.  The major causes for this 
are inter-packet dependency for processing, a need for PE/thread to PE/thread communication and an unbalanced 
load among PEs/threads. 
 
However, if inter-packet dependency, memory dependency and packet processing synchronisation effort are high, 
then the performance will reduce thus defeating the purpose of parallelism in NP.  The task decomposition must be 
done carefully with granularity of task in mind.  Coarse task may burden a PE while fine-granule task needs more 
effort in the task synchronisation between multiple PE and threads.  PE/thread to PE/thread communication will 
cause latency that needs to be taken care of.  Finally, dynamic or static packet processing load balancing needs to be 
done among NP or PEs to ensure balanced task distribution.  A study [22] shows that workload at NP is highly 
regular and predictable which allows for scheduling for performance improvement.  This will be an interesting area 
of research within NP in the near future. 
 
3.8 Multi-Threading 
 
Multithreading is another form of task pipelining by adopting hardware methods instead of software context 
switching.  Each PE can have many threads that do hardware context switching for any specific task that they own.  
For example, Intel IXP1200 [5] has 6 threads, Intel IXP2800 has 16 threads and Lexra NP has 8 threads [6].  
Multithreading allows full utilisation of expensive processing elements time by switching between subtasks to hide 
operation latency.  For example, memory access and hardware unit probing takes a longer period of time compared 
to any arithmetic functions.  While waiting for the access response, the processing element can switch its context to 
another sub-task.  PE controls only one thread at any given time.  This allows parallel operations to be done at the 
same time by the independent threads associated with a PE.  Context swapping and explicit pipelining allows full 
leverage of processing elements at all times in round-robin fashion.  Some implementations give full freedom to the 
programmer to intercept any threads operating under the PE on a priority basis.  
 
Context switching allows any thread to give away the control of the PE, save necessary information at that point of 
time and wait its turn to obtain the control back to the PE, before it can continue its next operation as specified in the 
code.  However, PE can perform memory or hardware unit access at this point of time as explained earlier.  The 
trade-off for this action is necessary as time has to be spent to save current context and perform task switching 
which is sometimes not worth the effort.  Besides that, one has to bear in mind that threading may cause memory 
contention and can lead to a deadlock situation.  So, memory locking, mutual exclusion and semaphore techniques 
have to be implemented to avoid deadlocks. 
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3.9 Function Specific or General Purpose Coprocessors 
 
Co-processors can be considered as a type of ASIC since they perform similar functions for all packets that are 
being served.  For example, every IP packet requires classification, table look-up and in some cases encryption/ 
decryption.  These functions can be performed by co-processors which give a better performance.  In a NP, co-
processors can do these similar functions across all type of network packets.  Packet classification or pattern 
matching, queue management, CRC, memory management, table look-up and encryption/decryption are some of the 
examples.  Many vendors [5, 14, 15] have adopted this method to accelerate the NP performance. 
 
Content Addressable Memory (CAM) and Ternary CAM (TCAM) are used [6, 12] to store look-up table entry, QoS 
determination information, multi-field forwarding look-up and MPLS related field look-up.  These implementation 
techniques make data search, data matching, and data retrieval for CAMs relatively much faster than normal 
memories.  Usually, carrier network units have about 1 million entries to TCAM.  This ensures IP and MPLS packet 
look-up can be performed in a fraction of a second. Due to the high cost factor, CAMs have limited usage at NPs. 
 
3.10 Caching 
 
Caching is an important feature of all the NPs.  Data is being cached either for control store or data store.  Control 
store allows caching of frequently used program codes in the NP, while data store keeps frequently used network 
data for faster packet processing.  For example, an IP address lookup program is frequently used compared to an IP 
route option-processing program for a core router.  In this case IP address lookup program will be cached in 
memories such as RAM, while IP route option-processing program may be stored in SDRAM.  Frequently used IP 
address and the lookup information will be cached in RAM for faster routing in routers.  It is the NP programmers’ 
choice to optimize the caching function for total performance improvement in a NP based equipment.  Cache 
memory presents in most of the NP that were surveyed in this work. 
 
 
4.0 NP PACKET PROCESSING PROCESS 
 
Network communication by OSI layers conceptually allows packets to be generated by application layer passed to 
network layer and finally sent to the physical layer to be transported to the destination as shown in Fig. 8.  During 
the transportation process, packets will be analysed at different layers to ensure the right destination of the packet.  
Electrical signals or waveforms will be converted to a series of bit streams, which we call packets or PDU (Protocol 
Data Unit) with header and payload information.  The overall packet processing tasks can be broken to three main 
tasks, receiving (RX), processing (PS) and transmitting (TX) as shown in Fig. 9. 
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Fig. 8: Packet processing by processors at network layers 
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Fig. 9: Major tasks in network packet processing 

 
Packets that arrive at the physical network interfaces can be in any form such as Asynchronous Transfer Mode 
(ATM), Synchronous Optical Network (SONET) or Ethernet and in any size.  Additional NP specific packet header 
(usually Media Access Control specific to the NP) is tagged to the arrived packet.  This allows easy packet 
identification, packet control and packet movement within the NP.  Packet with variable length x (Refer Fig. 9), is 
fragmented to fixed size packets, usually matching the internal bus width.  Usually, the initial packet has start-of-
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packet (SOP) index as indicated.  The last packet has end-of-packet (EOP) index in the header and if necessary, 
padding is done to fill the remaining space.  The fragmented packet is then moved to the memory with removal of 
EOP and SOP index header before storage, forming the original packet.  This step continues for all incoming 
packets as shown in Fig. 10. 
 

SOP x2x1 x3

assemble packets to be
transmitted in the NP bus

EOP

packets are broken to fixed
size for transfer efficiency

reassembled packets at memorypacket from external network

x

 
Fig. 10: Packet movement as it arrives at network physical layer, transported to memory and stored in memory 

 
Next, the packet moves to the processing stage.  The most important and time critical functions will be taking place 
at this stage.  Firstly, the arrived packets are moved to short-term memory by the PE for buffering via the bus.  Then, 
these packets are quickly moved to long-term memory such as SDRAM or DDRAM for further manipulation.  At 
this point, active packet manipulation activity by the PE begins.  Firstly, packet classification and reassembly will be 
done based on the packet identification.  Necessary information or rules such as look-up table information and 
pattern matching information will be stored in fast access memory like SRAM for the PE to access and perform 
operation to the packets.  Packets will be modified based on the packet type and re-written to the SDRAM memory.  
Various vendors differ in the implementation technique by having their own co-processor support to speed-up the 
packet processing at this stage.  Some of the processing steps may differ in order, depending on the architecture but 
all of the previously mentioned steps will be covered. 
 
Most of the NPs [5, 6, 7, 8, 9, 10, 11, 12] in the market use some hardwired co-processor support for fixed functions 
such as classification engine, encryption-decryption engine, look-up engine, error checking engine, statistic/ 
metering engine, hashing and etc.  Constant functions are suitable for implementation on co-processors, which can 
speed up the processing.  However, functions that are prone to changes, need software implementation at PEs.  PEs 
are also responsible to coordinate all the functions by moving packets to and from the memory via the 
interconnecting bus.  Highly accessible data will be stored in very fast access memories such as flash, local cache, 
CAM or TCAM. 
 
Finally, the processed packet will be transmitted out.  PEs will check for processed data availability in SDRAM 
space and also transmit queue readiness.  If data is available and transmit queue is ready to transmit the packet, the 
packet will be assembled and moved to TX stage.  Normally, data will be held in short term memory before being 
transmitted to ensure that continuity and wire-speed packet transmission is maintained at all times. 
 
Commercial NPs have similar packet processing functions for RX, PS and TX depending on the packet processing 
method, PP or DP.  Intel IXP1200 [5] processor is an example of DP, for packet classification, and buffering/storing 
operations being performed before packets are passed to the PE for further processing.  Generally, other processors 
from Lexra [6], IBM [7], MMC Networks [8] and Agere [10] perform similar functions but differ in implementation 
techniques.  For example, Agere’s NP performs these operations by using a functional processor called Fast Pattern 
Processor (FPP) to get the arrived data, perform packet recognition, classification and reassembly.  Then the packet 
is passed to Routing Switch Processor (RSP) which handles queuing, packet modification, traffic shaping, QoS and 
segmentation.  Finally, packets are transmitted out from the outgoing buffer.  Agere’s System Interface manages the 
FPP and RSP communication and packet management. 
 
Meanwhile, Motorola C-5e [14] that adopts PP approach has channel specific programmable processors called 
Channel Processors (CP).  These processors are dedicated for receiving, processing and transmitting specific type of 
packets at that channel.  Executive Processor (XP) provides network control and management functions to user 
applications.  It also has a few other programmable processors to perform packet management, control and other 
supporting functions.  High-speed interconnecting buses are used to connect the processors based on the functional 
requirements. 
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NPs from different vendors vary in processing method.  Generally one or both of the processing paths as shown in 
Fig. 8 will process network packets in any NP.  Fast Path is normally known as Data Plane while Slow Path is called 
Control Plane.  Fast Path is handled by NPs while a CPP handles Slow Path.  Fast path has the responsibility to 
analyze all arriving packets and perform forwarding at line rate for minimal service required packets.  It pushes 
packets that need complex processing to slow path.  Fast Path functions include look-up base on the packet header 
information and table entries in NP, packet classification etc.  On the other hand, Slow Path handles small amounts 
of control and management type of packets that require more complex processing such as network management, 
error messages and configuration information.  If management plane is present, the GPP will perform packet 
statistics related functions. 
 
 
5.0 SIMPLE LOOK-UP IMPLEMENTATION 
 
We have implemented a simple table look-up problem in CISC (Intel® Pentium® III) and NP (IXP1200) for 
comparison of performance using different programming languages for various combinations. 
 

Table 2: Average time indicate the time unit per lookup in US for 1 million look-up iteration with 512 IP address 
entries on various techniques for PIII and IXP1200. (X- indicates no test value) 

 
Look-up Technique\ 
Prog. Language 

C++ 
(Pentium III) 

Java 
(Pentium III) 

Perl 
(Pentium III) 

Work 
Bench (IXP1200) 

Direct Table  0.029 0.031 X X 
Hash Table  X 0.48 9.0 X 
Trie-based Table 1.41 X X 0.71 

 
Table 2 shows the performance impact of different languages for simple 512 entries IP address look-up function 
using different methods on different processors.  We did not implement all the look-up techniques using different 
languages for different processors, since our aim is to just high-light that programming language selection for 
different compilers and processors has a major impact on the overall performance packet/task processing.  In this 
case, IXP1200 needs half of the GP time to perform the similar look-up.  NPs are well designed for network related 
problems with suitable programming language and compilers. 
 
 
6.0 BENCHMARKING NPS 
 
A benchmark [31] or performance measurement model is a program or technique which is used to measure a 
performance characteristic of a computer systems/applications.  It often measures only one characteristic such as 
floating-point speed, I/O speed, speedup, latency or throughput.  These characteristics will be used as standard data 
for comparison of different applications.  The correct technique to measure this metrics or characteristics also plays 
an important role to determine the accuracy of the final results.  Benchmarking NP performance is a challenging 
task since NPs differ in their architecture.  NPs may have multiprocessors, multiple PEs, different number of threads 
and various co-processor support.  
 
However, establishing a single set of metrics to measure the NPs performance is important for customers to select an 
appropriate NP to suit their products.  Usually, benchmark and simulation results have a major impact on the 
product design and vendor selection.  Benchmarking tools such as CommBench [28], MediaBench [29], NetBench 
[30], and other NP/vendor specific performance measurement tools [5, 7, 8, 14] are well studied and available for 
use. 
 
CommBench [28] characterises the network application using four different packet headers and payload processing 
applications.  On the other hand, NetBench [30] uses various NP type applications, which can be categorised as 
micro-level, IP-level and application level.  These categories of application are executed and compared based on 
standard metrics for benchmarking purposes.  MediaBench [29] was designed for multimedia and communication 
systems, which are in many ways similar to network processors. 
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7.0 STANDARDISATION EFFORT 
 
There are dozens of NP products in the market and there will be many more to come.  However, interoperability 
between these NPs is almost impossible, as they do not share the same standards.  Due to this difficulty, Common 
Programming Interface Forum (CPIX) and Common Switch Interface Consortium (CSIX) were formed to 
coordinate the effort.  Later, these organisations were replaced by NPF (Network Processing Forum) [27].  The 
forum consists of Hardware Working Group, Software Working Group and Benchmarking Working Group whose 
aim is to introduce standards among NP vendors so that interoperability is possible and to reduce design complexity 
and shorten the time-to-market.  This allows design and development of a NP using multiple components from 
various vendors. 
 
 
8.0 CONCLUSION 
 
NP differs from other processors due to its dedicated function of network packet processing.  Many components 
form the building block of the NP. These components play significant roles in influencing the overall performance, 
protocol implementation techniques, specific features implementation methods, costs and development time.  The 
physical component has a fixed impact on the overall performance and can be predicted and calculated such as the 
PEs, multi threads, co-processors and memory units.  However, the programmable feature of the NP gives enormous 
room for further research.  Queue organisation and management is another large area that requires in-depth study for 
NP which handles various types of packets.  Packet processing functions themselves can be further improved by 
utilising the parallelisation, pipelining and multithreading feature in a NP.  
 
Programmable NP needs efficient packet centric programming techniques, optimised compilers, even functions 
partitioning, even workload distribution among thread/micro engines, effective processing techniques, optimal 
resource utilisation and optimised algorithms implementation.  If any of the above features are not designed and 
implemented cautiously, degradation of the performance occurs.  ‘Best effort’ performance tuning is also important 
after the software implementation, to achieve line rate or near line rate performance.  The introduction of high 
frequency network processors and more numbers of threads or micro engines will ensure that the packet processing 
speed is achieved.  However, we must remember that the packet processing complexity as well as the need to 
support multi protocol on the same NP is increasing.  This will be a continuing challenge for NP designers and 
software engineers. 
 
NP allows easy implementation of protocols.  It is the key to solve upper layer issues in the programmable way at 
the network processing nodes, either by adopting the fast path or slow path approach.  The purpose of this research 
is to adopt one of the network layer problems such as look-up and implement it in a NP for better performance and 
optimised techniques. 
 
It will be an interesting task to further explore usage of NP in areas such as mobile computing, active networks, 
GRID computing, Bio-Informatics, etc.  The enormous computing power provided by the NP can be used as an 
integrated computing resource by building a GRID network.  Besides, the processing capability of these NPs is also 
possible for exploitation in active packet processing.  Bio-Informatics is a new area of research, where large amount 
of data related to biological structure need to be processed.  Large integrated distributed network can be built using 
the NPs to support the computing resource demanding tasks.  Deployment of mobile computing throughout the 
globe requires huge networked processing resources.  NP also can play a vital role in this area. 
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