
Malaysian Journal of Computer Science, Vol. 18 No. 1, June 2005, pp. 20-30

20

APPLICATION OF COMPONENT-BASED ANALYSIS PATTERNS FOR PATTERN-BASED REVERSE
ENGINEERING OF MOBILE ROBOT SOFTWARE

Dayang Norhayati Abang Jawawi and Safaai Deris
Department of Software Engineering

Faculty of Computer Science & Information System
Universiti Teknologi Malaysia

81310 Skudai, Malaysia
email: dayang@fsksm.utm.my

Rosbi Mamat
Department of Mechatronics & Robotics Engineering

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

81310 Skudai, Malaysia

ABSTRACT

Developing software for Autonomous Mobile Robot (AMR) is difficult and requires knowledge in embedded systems,
real-time software issues, control theories and artificial intelligence aspects. To tackle the difficulty in developing
software for AMR, many researchers have proposed the approach of reusable software component for mobile robot
systems. Software pattern provides a way to reuse knowledge of expert across domain at all level of software
development. In this paper component-based analysis patterns applicable to AMR software at high-level software
development is proposed. Some important AMR component-based analysis patterns on AMR embedded software
requirements are presented. How the analysis patterns can help in documenting two existing AMR software through
pattern-based reverse engineering process is also illustrated.

Keywords: Analysis Pattern, Component-Based Software, Reverse Engineering, Mobile Robot Software

1.0 INTRODUCTION

Modern software has becoming very large and complex due to increase demands on its requirement. This
complexity leads to problems such as failure of software projects to meet their deadline, budget, and quality
requirements and the increased in software maintenance cost. Recently, software reuse has becoming a popular
approach to increase software productivity, improve software quality, consistency and reliability, and at the same
time decrease the costs of software development.

Software pattern is an approach of software reuse; in which pattern provides a way to reuse expertise that can be
used across domains at all level of development [1]. Software patterns are used to identify recurring problems and
describe a generalised solution to the problems, and help software developers to understand how to create an
appropriate solution, giving certain domain-specific problem.

Software patterns can be categorised into three software development levels: conceptual patterns or analysis patterns
for analysis level, design patterns for design level and programming patterns for implementation level [2]. Unlike
design patterns, analysis patterns concern with system view of a software, which is important for requirements
analysis and the usability of the final software.

Developing software for a heterogeneous system such as a mobile robot software, involves multi-disciplines of
expert knowledge such as embedded systems, real-time software issues, control theories and artificial intelligence
aspects. This requires analysis patterns which capture conceptual models in that domain in order to allow reuse
across applications. In this paper we focus on analysis patterns as a means to facilitate mobile robot software
knowledge reuse.

Two main areas where analysis patterns contribute to the software development process are: 1) to speed up the
development of abstract analysis models that capture the main requirements of the concrete problem by providing
reusable analysis models and 2) to facilitate the transformation of the analysis model into a design model by
suggesting design patterns and reliable solutions for recurring constructs in the problem space [3].

The objectives of this paper are twofold: 1) to present results of our studies on some important mobile robot
software analysis patterns; 2) to illustrate how existing AMR software can be documented using the analysis
patterns through a pattern-based reverse engineering process. The aim of pattern-based document is for better
understanding of the existing software and for identifying, evolving and applying reusable components [4].

Application of Component-Based Analysis Patterns for Pattern-Based Reverse Engineering of Mobile Robot Software

21

This paper is organised as follows: Section 2 shows some analysis patterns theories detailing creation processes and
documentation of AMR analysis patterns. Section 3 illustrates how the proposed AMR analysis patterns can be used
to document two mobile robots software through a pattern-based reverse engineering process. Section 4 concludes
the paper.

2.0 THE ANALYSIS PATTERNS FOR AUTONOMOUS MOBILE ROBOT

The software aspect of Autonomous Mobile Robot (AMR) has been recognised as the most difficult and challenging
part [5], 6]. The reuse of AMR software components can reduce the need to start a new AMR project from scratch,
and for robotic research group, this allows robotic researchers to focus on their particular field.

Software design patterns have previously been used in robotics software in a number of area and category. Graves
and Czarnecki [7] use design patterns for behavior-based robotics systems focusing mainly on the area of man-
machine interaction; Nelson [8] developed a design pattern for use in creating software control systems for
autonomous or robotic vehicles; Rivero [9] proposed patterns-oriented framework for developing automatic and
deliberative skills for mobile robots. However, till today there have been no analysis patterns for AMR documented
anywhere.

The aim of the AMR analysis patterns help to recognise the reusable parts of AMR software and define explicitly
the structure and the components of the AMR software system, and the relationships that exist within a component.
Our patterns are referred to as component-based patterns because each analysis pattern proposed is solving a
problem of a particular component in AMR software systems. Thus, each pattern is a unit of analysis. Partitioning
a system into bounded units of analysis is necessary to enable a system to be independently extensible [10].

In this section some important analysis patterns are presented. These analysis patterns are documented in a catalog
form for easy reference. Cataloging these analysis patterns involves two main processes: pattern mining process and
documenting the analysis patterns based on a certain standard.

2.1 Analysis Patterns Mining Process of the AMR Software

Pattern mining process concerns with identification and documentation of patterns. The patterns mining process in
this work is based on studies of AMR systems from books [1], [11], existing AMR software architectures [12], [13],
[14] and experience from research works on AMR systems at the University of Teknology Malaysia (UTM). Some
existing embedded and real-time domain-specific analysis patterns [15] and design patterns [16], [17], were also
analysed in the mining process.

As a result of this patterns mining process, twelve software analysis patterns in typical AMR software were
identified. The analysis patterns identified are: input-output, actuator, sensor, signal processing, motor control,
communication, Human-Robot Interface (HRI), poster, Behavior-Based Control (BBC), coordinator, planner and
Real-Time Operating Systems (RTOS). These analysis patterns were categorised according to hybrid deliberate
layered architecture of robot software [12], [13], [14]. The relationships between the patterns in a layered
architecture are shown in Fig. 1.

2.2 Documenting of the AMR Analysis Patterns

The essential information in AMR analysis patterns are cataloged based on guidelines of Meszaros [18], Gamma et
al. [19] and Douglass [17]. The AMR software analysis patterns are documented using six essential elements: name
- reference to the patterns; context - description of the context of the problem identified and the solution presented;
problem - statement of problem solved by the patterns; solution - structural solution presented using class diagram,
showing the elements and properties in the pattern, and interface to enable the pattern to communicate with other
components; related pattern - patterns that may relate or will have interaction to this pattern during composition
process; example of reuse component - name of components that can be reused in and with the pattern. Fig. 2 shows
a pattern catalogue for the BBC pattern documented using these six essential elements.

Jawawi, Deris and Mamat

22

D eliberate Layer

R eactive Layer

S upervisor Layer

SEN SO R

M O TO R
C O N TRO L

BEHAVIO R -BASED
C O N TRO L

ACTU ATO R

C O M M U NIC ATIO NH RI

C O O RD IN ATO R

IN PU T-O U TPUT

contro l sta tes

PLANN ER

sta tes
action

resources/
sta tes update

PO STER R TO S

request and
service

request and
service

request and
service

S IG NAL
PR O C ESSING

Fig. 1: AMR Software Pattern Relationships

BEHAVIOR-BASED CONTROL
Context
A mobile robot will have multiple behaviors, to react to the robot’s environment while trying to
achieve its goal. Behavior-based control will provide intelligence to select the parallel behaviors.

Problem
How to provide intelligence to decide on which behavior to select depending on the environment
and the robot’s goal.

Solution

<<BBC>>
BBCInstance

*

Behavior Layer
behaviors
actuatorAction
arbitrate()

Actuator Action
direction
desiredSpeed

1

Behavior
behaviorFlag
actuatorAction
sensorData

*

1

Actuator ActionBehavior

• Behavior Layer – Responsible to select action based on the fixed behavior-based architecture

layers of the robot behaviors.
• Behavior – A definition of a behavior in the robot system.
• Action –Action that will affect the robot’s actuator.

Related Patterns
Motor control, sensor, poster, coordinator, input-output.

Example of Reuse Components
Subsumption, motor schema.

Fig. 2: Pattern Catalogue for the Behavior-Based Control (BBC) Analysis Pattern

Application of Component-Based Analysis Patterns for Pattern-Based Reverse Engineering of Mobile Robot Software

23

The Unified Modeling Language (UML) structural elements and diagrams have been adopted in describing the
solution element of the pattern as UML provides a convenient and a lingua franca graphical representation in
industry and academic software practice. Even though the solution is described using object-oriented technique, the
implementation or realisation does not has to be in object-oriented approach.

The pattern solution is described using both structural model and real-time behavior model. The use of packages to
represent constructional pattern and definition of pattern interface in describing structural model were adopted from
Pattern-Oriented Analysis and Design (POAD) methodology [20]. The structural model describes classes that make
up the pattern. The combination of classes in the structural model is arranged in a package to represent
constructional pattern.

Interconnection between the components of AMR analysis patterns is supported by interfaces defined in the analysis
pattern solution. POAD methodology definition of pattern interface is adopted to describe the AMR pattern
interface. The result of wiring the pattern components using these interfaces is the functional structure of an AMR
software system.

In describing real-time behavior of AMR software, the functional structure description using structural model is not
sufficient. Hence, a real-time behavior model is required. We propose in this paper the enhancement of POAD to
enable it to support real-time behavior of a component. The enhancements proposed are: 1) notations for
identifying the types of real-time behavior of each class; and 2) introducing control interface between pattern
components that can address the real-time behavior.

To specify the real-time behavior of a real-time component a set of stereotypes is introduced. The stereotypes are to
describe different real-time behaviors using PECOS diagrammatical representation [21]. Based on this, three
stereotypes are introduced in the AMR analysis patterns. A passive class is a class that does not has its own thread
of control, and it is marked with a stereotype “ ”. An active class is a class with its own thread of control, and it is
marked with a stereotype “ ”. An event class is an active class whose behavior in triggered by event, and it is
marked with a stereotype “ ”.

As illustrated in Fig. 2 for the BBC pattern, the Behavior Layer and Behavior classes are active classes while the
Actuator Action is a passive class. In some cases, a class can be specified with more than one type of real-time
behavior depending on the application or implementation. For example, the class Sensor Driver from the sensor
pattern can be specified as active class, event class or passive class. Fig. 3 illustrates this case for the class sensor
driver of the sensor pattern, which the real-time behavior of the class is not posted in the solution because the form
of the behavior will be decided during the implementation phase of the pattern.

update()

<<Sensor>>
SensorInstance

Concrete
Sensor

(Hardware)

Sensor driver
data
read()
update()

Fig. 3: Sensor Pattern Solution

Concurrency and multitasking capabilities of AMR software are supported by the real-time operating system
(RTOS). Any component in AMR software that requires the RTOS services needs to be wired to the RTOS pattern
using control interface. The control interface defines the attributes of real-time requirements of a pattern
component, and this is only necessary in active or event classes. The control interface, however, is not explicitly
showed in a pattern solution, because services required from RTOS pattern can only be specified during the wiring
of pattern components.

In the documentation of the AMR analysis patterns, the typical reusable components in each pattern are also
suggested. This will facilitate the deployment of any existing reusable black box or white box components in that
particular pattern. For examples, a commercial-of-the-shelf preemptive RTOS can be treated as a black box
component in the RTOS pattern and Proportional-Integral-Derivative (PID) Controller patterns from Pont and
Banner [16] can be used as white box component in AMR motor control pattern.

Jawawi, Deris and Mamat

24

3.0 CASE STUDIES: REVERSE ENGINEERING OF EXISTING AMR SOFTWARE INTO PATTERN-
BASED AMR DOCUMENTATION

Reverse engineering is the process of analysing a subject system to identify the system’s components and their
interrelationships, and create representations of the system in another form or at a higher level of abstraction [22].
In this section a pattern-based reverse engineering process is illustrated in synthesizing higher abstraction of two
existing mobile robot software and document their structural description using the proposed AMR analysis patterns.

The reverse engineering is performed on UTM intelligent AMR software and Fire Marshal Bill AMR software [22]
to gain the graphical analysis representation of the software, based on the AMR analysis pattern. The first mobile
robot software is the leader agent’s code as a part of our own multi-agent mobile robots software. The real-time
behaviors of the software are supported using a cooperative RTOS and the intelligent control is implemented using
subsumption behavior-based intelligent architecture. The second robot software is the Fire Marshal Bill balancing
robot [22] which uses the Real Time Executive for Multiprocessor Systems (RTEMS) RTOS to support
multitasking. The robot intelligent is implemented using a non-behavior-based architecture.

The two robot software are selected due to several reasons: 1) the C codes for both software are accessible to us; 2)
both software are developed using conventional method without using any pattern; 3) both software are
implemented using the traditional non-object-oriented approach; 4) the first software is based on behavior-based
approach which represents common mobile robot software architecture, thus matched with the proposed analysis
patterns; and 5) the second software is not implemented using the behavior-based approach, thus posed a challenge
in documenting it using the proposed analysis patterns.

To preserve the design history of the codes, the reverse engineering processes are performed manually. The pattern-
based reverse engineering processes are performed in three phases: 1) reverse to class; 2) reverse to pattern; and 3)
reverse to pattern interface. Each phase is detailed out using the two case studies. These reverse engineering
processes do not consider in detail the reuse components utilized in the codes such as the cooperative RTOS and
some hardware interfaces code, as these components are already in the reuse forms.

3.1 Reverse to Class Phase

Reverse to class phase is to identify possible class structure that can be extracted from the code. The first step in
this phase is to produce class diagrams from the functions in the program and the second step is to analyse the class
diagrams and relationships between the diagrams. In this phase all the functions or modules names are maintained
according to the original code names. Basically, this phase involves modeling of the functional structure of the
software and identifying the classes or objects that required services from RTOS to support the cyclic and event
classes.

Fig. 4 presents example of classes with their relationships, derived from the Fire Marshal Bill AMR software [22].
It illustrates the functional relationships between the classes, and also shows: 1) non-functional relation with a
reused preemptive RTOS component to support multitasking behavior of the mobile robot; and 2) the classes with
cyclic behavior which required services from RTOS class called RTEMS.

Mutual exclusion is very important when designing concurrent real-time systems such as the Fire Marshal Bill
software, which used a preemptive RTOS. To ensure shared resources are accessed by one component at one time,
the mutual exclusion services are required from RTOS. The flame and robot classes in Fig. 4 are examples of
classes that required this service from RTEMS class.

3.2 Reverse to Pattern Phase

In this phase, three processes are performed, namely, matching process, grouping process and regrouping process.
By comparing the software system class diagram with pattern solution documented in AMR analysis pattern
catalogue, the matching process is performed. From this process, the component-based analysis patterns involved in
an AMR software domain are identified. In the UTM intelligent AMR software, five AMR analysis patterns are
identified, they are: input-output, sensor, actuator, BBC and RTOS patterns. For Fire Marshal Bill software, six
AMR analysis patterns are identified, they are: input-output, sensor, actuator, signal processing, motor control and
RTOS patterns. Up to this point of pattern-based reverse engineering process, we show how AMR analysis patterns
can help to detect candidates for reusable software components from the two softwares.

Application of Component-Based Analysis Patterns for Pattern-Based Reverse Engineering of Mobile Robot Software

25

Gyroscope
(Hardware)

gyro

Accelerometer
(Hardware)

accel

kalman

motor Encoder
(Hardware)

fqd

Gearmotor
(Hardware)

mcpw
R/C Servo
(Hardware)

servo

LCD Display
(Hardware)

lcd

robot

UVTRON
(Hardware)

flameDistance
Sensor

(Hardware)

distance

IR Photo
Transistor
(Hardware)

Mcp3208

MIC &
Amplifier

(Hardware)

tone

Serial
interface

(Hardware)

ui

1

5

1

11

1

1

12
1

21

2

1

1

RTEMS

1

2

Fig. 4: Fire Marshal Bill class diagram

Using the identified patterns component, the classes of the mobile robot are grouped in the appropriate pattern
packages or pattern instances. In this grouping process the matching of real-time control behavior are performed.
Fig. 5 shows the example of two packages from the analysed UTM intelligent robot software, where Arbitration
package is an instance of BBC pattern and Motor package is an instance of actuator pattern. In the Arbitration
package eight classes shows the cyclic behavior, hence, require services from Cooperative RTOS package.

<<BBC>>
Arbitration

Load Detection
Behavior

load_flag
load_command
load()

Task Completion
Behavior

task_flag
task_command
task()

Passage Detection
Behavior

pass_flag
pass_command
pass()

Obstacle Avoidance
Behavior

obst_flag
obst_command
obst()

Wall Detection
Behavior

wall_flag
wall_command
wall()

Wall Following
Behavior

wallfol_flag
wallfol_command
wallfol()

Cruise
Behavior

cruise_flag
cruise_command
cruise()

BehaviorLayer
behavior_flag
behavior_command
motor_command()

<<Actuator>>
Motor

Concrete
Motor

(Hardware)

Motor driver
operation
motor()
move()

Actuator Action

direction
1 *

Fig. 5: The Arbitration and Motor Packages

Jawawi, Deris and Mamat

26

Some classes or modules can be grouped and matched directly into appropriate pattern packages as illustrated in Fig.
5, however some classes or modules need to be regrouped or restructured in order to match with the proposed
analysis pattern. For example, module motor in Fire Marshal Bill software consists of three PID control loops: 1)
position PID to compute desired tilt; 2) balancing PID for velocity control of motor; and 3) heading PID for
velocity control of motor. Only the balancing and heading PID matched with our Motor Control pattern therefore
the two PID are grouped into the pattern.

The position PID to compute desired tilt should be included into a higher level of intelligence as compared to motor
control pattern. Since the robot module also handles the robot high-level intelligence, the two modules can be
grouped under different patterns. The structure of the two combined modules do not match with any pattern that we
have proposed, therefore, the combination of position PID and robot module will form a user defined pattern that we
called user High Level Robot Control (user HLRC) package. Fig. 6 shows the structure of Fire Marshal Bill level
diagram after the matching, grouping and regrouping process.

<<Sensor>>
gyro

<<Sensor>>
accel

<<Signal
Processing>>

kalman

<<Motor
Control>>

balancing PID
and heading

PID

<<Sensor>>
fqd

<<Actuator>>
mcpw

<<Actuator>>
servo

<<IO>>
lcd

<<User
HLRC>>

robot and
position PID

<<Sensor>>
flame

<<Sensor>>
distance

<<Sensor>>
Mcp3208

<<Sensor>>
tone

<<IO>>
ui

<<RTOS>>
RTEMS

Fig. 6: Pattern Level Diagram for Fire Marshal Bill Mobile Robot

3.3 Reverse to Pattern Interface Phase

Interfaces are the means by which components connect in component technology [10]. The wiring of the
components using AMR analysis patterns is supported by interfaces defined in the analysis pattern solution. The
final stage of the reverse engineering process is to identify interfaces. Two types of interfaces need to be identified,
i.e., functional interface and control interface.

Functional interface was specified based on the solution proposed in AMR analysis patterns. Example of functional
interface selection for Motor package as shown in Fig. 5 is done as follows: from the analysis patterns, solution of
actuator pattern suggested scaler() function to act as the functional interface for the pattern and from Fig. 5, for the
Motor package, the move() operation is selected to be the interface for the package because the move() operation
performed the scaling function as proposed in the functional interface of actuator pattern.

After all functional interfaces between packages are identified the functional composition of AMR software at
analysis level is modelled. The composition is illustrated using Pattern-Level with Interface diagram as proposed in
POAD methodology. The example of Pattern-Level with Functional Interface diagram is shown in Fig. 7.
However, this composition does not synthesize the real-time behavior of the software. The real-time behavior
within the intelligent AMR software has been analysed previously using PECOS temporal behavior as shown in Fig.
6.

The real-time behavior can be presented at pattern level analysis using control interface. The interface will define
the interface to support the real-time temporal behavior and the synchronization services between packages. For
example, the Fire Marshal Bill robot software requires two main services from RTEMS packages to handle the robot
multitasking software: 1) task manager to manage nine cyclic tasks in the software; and 2) semaphore manager to
provide mutual exclusion capability for operation in run_maze() to read flame. The control interface provides this
additional information of components pattern as shown in Fig. 8.

Application of Component-Based Analysis Patterns for Pattern-Based Reverse Engineering of Mobile Robot Software

27

The attributes for each control interface depend on the synchronization or types of real-time behavior in the pattern
that are supported by RTOS. For example, in the UTM intelligent AMR software, the attribute for each control
interface is the priority of each active component. However, for Fire Marshal Bill robot software, the control
interface for active component needs to specify more detail attributes such as period.

<<BBC>>
Arbitration <<Sensor>>

Wall Following
Sensor

<<IO>>
Push Button

<<Sensor>>
IR Obstacle

Sensor

<<Sensor>>
Landmark 2

Behavior
Load
Detection

load_check()

pass_check()

obst_check()

wallfol_check()

Actuator
Action

<<IO>>
Buzzer

tone()

<<IO>>
RF Receiver

rf_check() Behavior
Task

Completion

<<IO>>
RF Transmitter

rf_set()

<<Sensor>>
Landmark 1

task_check()

Behavior
Passage

Detection

Behavior
Obstacle

Avoidance

Behavior
Wall

Detection

<<Sensor>>
IR Wall Detection

Sensor wall_check()

Behavior
Wall

Following

<<Actuator>>
Motor

move()

<<Sensor>>
Encoder

encoder_check()

Fig. 7: Pattern-Level with Functional Interface Diagram for the Intelligent AMR

<<Sensor>>
gyro

<<Signal
Processing>>

kalman

<<IO>>
lcd

<<Sensor>>
flame

<<Sensor>>
distance

<<Sensor>>
tone

<<IO>>
ui

<<Motor
Control>>

balancing PID
and heading

PID

<<User
HLRC>>

robot and
position PID

<<RTOS>>
 RTEMS

Abstract Thread

Shared
Resourcesflame_task()

distance_task()

gyro_task()

motor_pos_task()

kalman_task()

ui_task()

tone_task()

lcd_task()

flame_sem

pos_PID_task()

run_maze()

Fig. 8: Pattern-Level with Control Interface Diagram for the Intelligent Mobile Robot

Jawawi, Deris and Mamat

28

Pattern-based reverse engineering is used to synthesize higher abstraction of the two case studies of AMR software.
The software abstraction for each case study is presented using two separate pattern-level diagrams called Pattern-
Level with Functional Interface and Pattern-Level with Control Interface diagram. Besides synthesizing higher
abstraction of the software, the diagrams can also be used as graphical representation for documentation of the
software. The main advantage gained from this higher software abstraction and graphical representation is software
reusability. The AMR analysis pattern and the pattern-based reverse engineering can help to detect candidates for
reusable software component from the existing software.

Based on reverse engineering experience of UTM intelligent AMR software and Fire Marshal Bill AMR software
we found that both software designs can be structured according to our proposed analysis patterns. The UTM
intelligent AMR software design structure is easier to be translated into our analysis pattern because software design
was based on well-design architecture of behavior-based approach. For Fire Marshal Bill AMR software a few
restructure works have to be done in order to document their design using our analysis patterns.

4.0 CONCLUSION

This paper has presented some important component-based analysis patterns as a result of our studies on AMR
embedded software requirements. The representation of the patterns using structural elements of UML notation and
POAD interface representation provides logical views to represent AMR functional composition. In concurrent and
multitasking environment of AMR software this functional composition is not enough, the real-time form of each
pattern need to be defined. Therefore, enhancement of POAD is presented in this paper to enable it to support real-
time attributes of a component.

Based on the software analysis pattern, the pattern-based reverse engineering is performed on two existing mobile
robot software. The results of the pattern-based reverse engineering process are the graphical documentation of
software using pattern-level diagrams. Optimisation of the original code to improve the quality of the original
subject software can also be proposed during the reverse engineering process based on the AMR analysis patterns.
Another important conclusion derived from the reverse engineering is verification of the existence of AMR analysis
pattern in existing mobile robot software, even though the software are originally not designed using any pattern
approaches.

REFERENCES

[1] L. Rising, “Patterns: A Way to Reuse Expertise”. IEEE Communications Magazine, Vol. 37(4), 1999, pp.

34-36.

[2] D. Riehle and H. Zullighoven, “Understanding and Using Patterns in Software Development”. Theory and

Practice of Object Systems, Vol. 2(1), 1996, pp. 33-13.

[3] A. Geyer-Schulz and M. Hahsler, “Software Reuse with Analysis Patterns”, in Proceedings of the 8th

Association for Information Systems (AMCIS), Dallas, TX, August 2002, pp. 1156-1165.

[4] G. Odenthal and K. Quibeldey-Cirkel, “Using Patterns for Design and Documentation”, in Proceedings of

11th European Conference on Object-Oriented Programming (ECOOP '97), Vol. 1241(1997), Springer-
Verlag Heidelberg Lecture Notes in Computer Science, Jyväskylä, Finnland, June 1997, pp. 511-529.

[5] T. Braunl, Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems. Springer-

Verlag, New York, 2003.

[6] D. W. Seward and A. Garman, “The Software Development Process for an Intelligent Robot”. IEEE

Computing and Control Engineering Journal, Vol. 7(2), 1996, pp. 86-92.

[7] A. R. Graves and C. Czarnecki, “Design Patterns for Behaviour-Based Robotics”. IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Human, Vol. 30(1), 2000, pp. 36-41.

[8] M. L. Nelson, “A Design Pattern for Autonomous Vehicle Software Control Architectures”, in Proceeding of

23rd International Conference on Computer Software and Applications, 27-29 October 1999, pp. 172-177.

Application of Component-Based Analysis Patterns for Pattern-Based Reverse Engineering of Mobile Robot Software

29

[9] D. M. Rivero, A. Khamis, F. Rodriguez and M. Salichs. “A Patterns-Oriented Framework for the

Development of Sequential Movement Skills for Indoor Mobile Robots”, in Proceeding of 11th International
Conference on Advanced Robotics, Portugal, 30 June - 3 July 2003.

[10] C. Szyperski, Component Software: Beyond Object-Oriented Programming. Second Edition, Addison-

Wesley, Bostan, 2002.

[11] L. J. Jones, B. A. Seiger and A. M. Flynn, Mobile Robots Inspiration to Implementation. Second Edition. A

K Peters, Natick, 1999.

[12] A. Oreback and H. I. Christensen, “Evaluation of Architecture for Mobile Robotics”. Autonomous Robots,

Vol. 14, 2003, pp. 33-49.

[13] R. Alami, R. Chatila, S. Fleury, M. Ghallab and F. Ingrand, “Architecture for Autonomy”. Journal of

Robotics Research, Vol. 17(4), 199, pp. 8315-337.

[14] R. Volpe, I. A. D. Nesnas, T. Estlin, D. Mutz, R. Petras and H. Das, “CLARAty: Coupled Layer Architecture

for Robotic Autonomy”. Jet Propulsion Laboratory Technical Report D-19975, California Institute of
Technology, 2000.

[15] S. Konrad and B. H. C. Cheng, “Requirements Patterns for Embedded Systems”, Proceedings. IEEE Joint

International Conference on Requirements Engineering, 2002, pp. 127-136.

[16] M. J. Pont, and M. P. Banner, “Designing Embedded Systems Using Patterns: A Case Study”. Journal of

Systems and Software, Vol. 71(3), 2004, pp. 201-213.

[17] B. P. Douglass, Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison

Wesley, Boston, 2002.

[18] G. Meszaros, and J. Doble, “A Pattern Language for Pattern Writing”.
 http://hillside.net/patterns/writing/patternwritingpaper.htm available 21 June 2004.

[19] J. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reuse Object-Oriented

Software. Addison-Wesley, Reading, 1995.

[20] S. M. Yacoub and H. H. Ammar, Pattern-Oriented Analysis and Design: Composing Patterns to Design

Software Systems. Addison-Wesley, Boston, 2004.

[21] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller, C. Zeidler, T. Genssler, R. van den

Born, “A Component Model for Field Devices”, in Proceedings of the First International IFIP/ACM
Working Conference on Component Deployment. Springer-Verlag Heidelberg, Vol. 2370, Berlin, Germany,
20-21 June 2002, pp. 200-209.

[22] E. J. Chikofsky and J. H. Cross II 1990, “Reverse Engineering and Design Recovery: A Taxonomy”. IEEE

Software, Vol. 7(1), pp. 13-17.

[23] Fire Marsal Bill at www.dragonflyhollow.org/matt/robots/firemarshallbill/ available August 2004.

Jawawi, Deris and Mamat

30

BIOGRAPHY

Dayang Norhayati Abang Jawawi received her B.Sc. Degree in Software Engineering from Sheffield Hallam
University, UK and M.Sc. of Computer Science from University of Teknology Malaysia. Currently she is working
towards her PhD. degree in software engineering. Her area of research is component-based software engineering for
embedded real-time software.

Safaai Deris is a Professor at the Faculty of Computer Science and Information Systems, University of Teknology
Malaysia. Prior to joining the university, he was a system analyst at the Ministry of Agriculture. He received his
B.Sc. from Agricultural University of Malaysia, his M.Eng. and PhD. from University of Osaka, Japan. His fields
of specialisations are artificial intelligence, software engineering, bioinformatics, database systems, object-oriented
technology, planning and scheduling.

Rosbi Mamat is currently an Associate Professor and Head of Department of Mechatronics and Robotics
Engineering at Faculty of Electrical Engineering of Universiti Teknologi Malaysia. He obtained his PhD. in Control
Engineering from University of Sheffield, UK. His main areas of research interest cover intelligent control, robotics
and mechatronics systems.

