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ABSTRACT 
 

Distributed system provides a cost-effective means of enhancing a computer 
system’s performance in areas such as throughput, fault-tolerance, and 
reliability optimization. Consequently, the reliability optimization of a 
distributed system has become a critical issue. A K-terminal reliability is 
defined as the probability that a specified set, K, of nodes is connected in a 
distributed system. A K-terminal reliability optimization with an order (the 
number of nodes in K-terminal) constraint problem is to select a K-terminal of 
nodes in a distributed system such that the K-terminal reliability is maximal 
and possesses sufficient order. It is evident that this is an NP-hard problem. 
This paper presents a heuristic method to reduce the computational time and 
the absolute error from the exact solution. The proposed algorithm is based on 
not only a simple method to compute each node’s weight and each link’s 
weight, but also an effective objective function to evaluate the weight of node 
sets. Before appending one node to a current selected set, instead of 
computing the weight of all links and all nodes of each set, only the weight of a 
node, which is adjacent to the current selected set, and links between the node 
and the current selected set are accumulated. Then the proposed algorithm 
depends on the maximum weight to find an adequate node and assign it to the 
current selected set in a sequential manner until the order of K-terminal 
constraint is satisfied. Reliability computation is performed only once, thereby 
saving much time and the absolute error of the proposed algorithm from exact 
solution is very small. 
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INTRODUCTION 
 

The reliability problem of a distributed system (DS) with a general structure is 
NP-hard (Aggarwal et al., 1982; Irani and Khabbaz, 1982). Efficient algorithms 
easily implemented on a computer are needed to analyze the reliability of large 
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networks. In addition, such algorithms should yield good approximations of the 
reliability when the networks are so large that the computational time becomes 
prohibitive.  
 
The topology of a DS with n processing elements (nodes) and e communication 
links (links) can be characterized by an undirected graph G = (V, E) where V 
denotes a set of nodes, and E represents a set of links. 
 
These DS topologies can be characterized by their DS reliability, message-delay, 
or network capacity. These performance characteristics depend on many 
properties of G that represent the DS topology (Stankovic, 1984; Kumar and 
Agrawal, 1993): the number of ports at each node (degree, say d(vi), of a node 
vi), and the number of links. Notably, the number of links directly impacts the 
system’s reliability. 
 
For an undirected graph G the K-terminal reliability of G, R(Gk), is the 
probability that the set K of nodes of G is connected in G. Two special and 
widely studied cases are those obtained for K = V and |K| = 2. For example, in 
Fig. 2, the former K-terminal is K = {v1, v2, v3, v4, v5, v6, v7, v8 }; the latter 
K-terminal is one of K = {v1, v2 }, K = {v1, v3 },…, K = { v7, v8 }. The first is 
the all-terminal reliability of G, the second is the 2-terminal reliability (Rai et al., 
1987; Satyanarayana and Hagstrom, 1981; Torrieri, 1994). A typical network 
reliability problem is to compute R(Gk). This is not easy since the reliability 
problem for a general network has been shown to be inherently difficult and very 
likely no efficient algorithm can be constructed for its solution. It has been 
shown that the network reliability with respect to a network with general 
structure is NP-hard (Aggarwal and Rai, 1981; Lin and Chen, 1992). Very 
recently it was also established that even for planar networks the computation of 
the K-terminal reliability, for K ≠ V, is an NP-hard problem (Politof and 
Satyanarayana, 1986). The case for which K = V (all-terminal reliability) is at 
present undetermined for planar networks. The above results mean that it is 
unlikely that a polynomial algorithm to solve a general network reliability 
problem will be found. 
 
This work largely focuses on how to compute nearly maximum system 
reliability subject to the order Krequest of nodes constraint. For a large DS on 
various topologies, our results demonstrate that the proposed algorithm is 
reliable and efficient. 
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PROBLEM DESCRIPTION 
 
In this section, we describe the problem addressed herein to clarify our research 
objectives. 
 

Notation and Definitions 
 
Notations 
G=(V,E) an undirected DS graph where w(Gk) the weight of Gk obtained by the  
 V denotes a set of processing   object function. 
 elements, and E represents a set of d(vi) the number of links connected to the 
 communication links.  node vi. 
n the number of nodes in G, n = |V|. w(ei,j) the weight of the link ei,j. 
vi the ith processing element or the ith Vadj(Gk) a set of nodes which are adjacent to 
 node.  any node of Gk. 
e the number of links in G, e = |E|. VGk a set of nodes of Gk. 
ei,j an edge represents a communica- w VG k

( ) ∑ w(vj), where vj ∈VG k
. 

 tion link between vi and vj. EGk
 a set of direct links between any two 

pi,j the probability of success of link ei,j.  nodes in Gk. 
qi,j the probability of failure of link ei,j. w EG k

( ) ∑ w(ei,j), where ei,j ∈EG k
. 

Krequestt order of nodes constraint in a DS. vs a starting node for deriving a  
Gk the graph G with the set K of nodes  K-terminal. 

specified, and |K| ≥ 2. εs j,  the direct link es,j does not exist, but   
R(Gk) 

the reliability of K-terminal solution   there are at least two paths whose  

of a DS graph G.  length is two between vs and vj.  
yi,j the number of paths whose length is V G kε( ) a set of nodes which εs j, exist in Gk. 

 two between vi and vj. E G kε( ) a set of εs j, . 

w(vi) the weight of the ith node. w( εs j, ) the weight of εs j, . 

 
Definitions 
  
Definition 1. A K-terminal reliability (KTR) is defined as the probability that a 
specified set, K, of nodes is connected (where K denotes a subset of the set of 
processing elements V). 
 
Definition 2. If Gk denotes the G with the set K, |K| ≥  2,of nodes specified, a 
node vi is directly connected to a set VGk, a set of nodes of Gk, of nodes if and 
only if there is a link between vi and a node in VGk. 
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Definition 3. A number of reliability computations (NRC) is the number of 
computations of a KTR that the order of Gk are equal to Krequest. 
 
Definition 4. Absolute error is defined as the value of subtracting an 
approximate solution from an exact solution of KTR; i.e. absolute error = 
DSRopt – DSRapp, where DSRopt denotes an optimal solution which obtained by 
running exhaustive search algorithm and DSRapp denotes an approximation 
solution which obtained by running heuristic algorithm. 
 
Definition 5. Relative error is defined as the value of dividing an exact solution 
into the absolute error; i.e. relative error = 1 – ( DSRopt – DSRapp ). 
 
Definition 6. The ratio of average relative error is defined as the value of 
dividing the summation of relative error by the number of the total simulation 
cases under consideration; i.e. the ratio of average relative error = ( ∑ [ 1 – 

( DSRopt – DSRapp ) ] ) / (total simulation cases). 
 
Definition 7. The random method is defined as the algorithm which select a set, 
K, with an order Krequest of nodes using random number generator under 
consideration. 
 
PROBLEM STATEMENT 
 
A KTR can be obtained using the sum of mutually disjoint events 
(Satyanarayana and Hagstrom, 1996; Lin et al., 1999). A K-terminal reliability 
problem can be characterized as follows: 
Given 
 Topology of a DS. 
 The reliability of each communication link. 
Assumption 
 Each node is perfectly reliable. 
 Each link is either in the working (ON) state or failed (OFF) state. 
Constraint 
 The total nodes to be required. 
Goal 
 To select a specified set, K, of nodes in a DS, by doing so, K-terminal 
reliability is adequate under an order Krequest constraints. 
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Restated, a set, K, of nodes can be derived from the given set V that constitutes 
a DS in that K-terminal reliability is adequate. The main problem can be 
mathematically stated as follows: 
Object: Maximize R(Gk) 
subject to: the order of K-terminal Gk = Krequest 
where R(Gk) is defined as the reliability of K-terminal solution of a DS graph G. 
 
Obviously, the problem for a large DS, as in a metropolitan area network, 
requires a large execution time. Herein, we develop an efficient method that 
allows the K-terminal reliability optimization in the DS to achieve the desired 
performance.  
 
HEURISTIC ALGORITHM FOR K-TERMINAL RELIABILITY 
 
In this section, we present a heuristic algorithm to maximize system reliability. 
The analyses performed herein assume that all of the nodes are perfect and the 
links are unreliable, i.e. each link is either in the working (ON) state or failed 
(OFF) state. 
 
The Concept of Proposed Algorithm 
 
As generally known, the exhaustive method spends long execution time in a 
large DS. The exhaustive method, an optimal solution, cannot effectively reduce 
the problem space. Occasionally, an application requires an efficient algorithm 
to compute the reliability due to its resource considerations. Under this 
circumstance, achieving optimal reliability may not be desirable. Instead, an 
efficient algorithm with an approximate reliability computation algorithm is 
highly attractive. The topologies of most DS are large and an increasing number 
of nodes cause the execution time for a solution to exponentially grow. 
Therefore, this work presents an algorithm capable of reducing the total 
execution time to achieve the sub-optimal KTR of a DS. 
 
Consider a DS with n nodes and e links. Restated, the set K of nodes has the 
maximum reliability and its total nodes is equal to the order krequest constraint. 
 
The reliability of a set of selected nodes depends on their links and the link 
reliability. For any node, the degree of that node affects the number of paths of 
the information can be transferred from others' nodes. Therefore, in this work, 
we employed a simple means of computing the node weight, which takes less 
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time and can quickly compute the weight of every node. The weight, say w(vi), 
of node vi is formulate as: 
 

w v qi i k z
z

d v i

( ) .,

( )

= −
=

1
1

Χ                                         (1) 

where  
qi,j denotes the probability of failure of link ei,j that communicate node vi and vj 
the index kz ∈1,...,n  
d(vi) denotes the degree of node vi  
2 ≤  d(vi) ≤  n-1 
n represents the number of nodes in G, n = |V|. 
 
The Eq. (1) is easily programmed and reduces many multiplicative operations. If 
the degree of vi is d(vi), the weight of vi can be computed in one subtraction and 
d(vi) multiplication. Thus, we can obtain the weight of every node in n 
subtractions and 2 × e multiplication. 
 
In the network, two nodes may contain many paths between them. A path’s 
length is between one and n-1. To reduce the computational time, we consider 
the path in which the length is not greater than two. The following equation is 
used to evaluate the weight, say w(ei,j), of link ei,j. 
 

w e q q p
i j i j z

y i j

i k z k z j
( ) ( )

, ,

,

, ,
= − ×

=
1

1
Π ,                         (2) 

Where  
pi,j (qi,j) denotes the probability of success (failure) of link ei,j 
the index kz ∈1,...,n  
yi,j denotes the number of paths with length two between vi and vj 
yi,j ≤ −n 2. 
 
The weight of ei,j can be computed in one subtraction and 2 × (yi,j +1) 
multiplication. Thus, in the worst case, when the graph is a complete graph, we 
can obtain all of the weights of each link in n × (n-1)/2 subtractions and 
n × (n-1) × (n-2)/2 multiplication. 
 

In the same manner, if εi j,  denotes no direct link exits, but yi,j is greater than 

two between vi and vj, the following equation is used to evaluate the weight, say 

w(εs j, ), of εi j,  
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w q pi j z

y i j

i k z k z j( ) ( ),

,

, ,ε = − ×
=

1
1

Π ,                                (3) 

Where  
yi,j ≤ −n 2. 
 
Assume not only that we have a selected set Gk of nodes with reliability R G k( ), 

but also that the nodes in Gk are all directly connected. If another set ′G k
 of 

nodes exists in which just one node is different from Gk and ′G k
 has one node 

which is not directly connected with other nodes in ′G k
, then we say 

that R G k( )≥ R G k( )′  for R G k( )′  the reliability of set ′G k
. 

 
Fig. 1. (A) A selected set Gk ={ v1, v2, v3} under a DS with six nodes and seven 
links; (B) A selected set ′G k

={ v1, v2, v4} under a DS with six nodes and seven 

links. 
 

v1

v4
v3

v5

v2

:denotes unselected node :denotes selected node

(A) (B)

v1
v4v3

v5

v2v6 v6

 
By assuming that the 2-terminal reliability between v1 and v2 is R1, this relation 
can be represented as R({v1, v2}) = R1, and R({v1, v3}) = R2, R({v2, v3}) = R3, 
R({v3, v4}) = R4. In Fig. 1(A), we select nodes v1, v2 and v3. Therefore, R({v1, 
v2}) = R1, R({v1, v3}) = R2, R({v2, v3}) = R3. According to Fig. 1(B), we select 
nodes v1, v2 and v4, Therefore, R({v1, v2}) = R1, R({v1, v4}) = R2 × R4 and 
R({v2, v4}) = R3 × R4. Because R2 ≤  1, R3 ≤  1 and R4 ≤  1, R2 × R4 ≤  R2 
and R3 × R4 ≤  R3, the reliability of node v1, v2, v3 ≥  the reliability of node v1, 
v2, v4. Restated, R({v1, v2, v3}) ≥  R({v1, v2, v4}). However, this assumption is 
not always true if (a) a path exists between v4 and v1 or between v4 and v2, and 
(b) the reliability of the path is larger than the reliability between v3 and v1 and 
between v3 and v2. For this reason, in some cases, the maximum reliability 
cannot be achieved using the proposed method. 
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This assumption is true if the reliability of any path between X and K is less 
than that of links between the set K of nodes. Restated, the proposed method can 
be used to achieve maximum reliability. 
 
In each set of nodes, if the number of members of a set is |K|, the following 
equation can be used to compute its weight 
 

w(Gk) = { [w EG k
( ) + w(εs j, )] / [|K| × (|K|-1)/2] + w VG k

( ) / [(n-1) × |K|] },  

(4) 
where 
w EG k
( )= Σw ei j( ),

 and ei,j ∈a set E G k
of direct links between any two nodes in 

Gk 

w V
G k

( )= Σw v j( ) and vj ∈a set V G k
of nodes in Gk. 

 
According to w EGk

( ) and w VGk
( ) in Eq. (4), only the sum of the weight of the 

links between vi and Gk and the weight of node vi should be derived. Therefore, 
the weight of the K-terminal with another node, say vi, can be obtained easily 
and efficiently using the equation as follows: 
 

w(Gk Υ {vi}) = { [w EG k
( ) + w( εs j, ) + Σw ei j

v V v V e Ej G k i G k i j G k

( ),
, , ,∈ ∉ ∉

] / [((|K|+1) × |K|)/2] 

+ 
[w VG k

( )+w(vi)] / [(n-1) × (|K|+1)] }.             (5) 

 
Herein, a node of the heaviest weight is selected and serves as the starting node 
for deriving an adequate K-terminal. Before assigning one node to a selected set, 
the proposed algorithm only inspects those nodes that are adjacent to any node 
of the selected node for the reason of reducing computation time. In the first 
node assigned to a selected set, the proposed algorithm also probes nodes in 

V Gkε( )
. The notation V Gkε( )

 represents a set of nodes which εs j,  exist in Gk. 

 
The Proposed Heuristic Algorithm 
 
We present a heuristic algorithm by carefully selecting the starting node vs 
according to a node’s weight. Before assigning a node to the selected set, the 
proposed algorithm probes those nodes Vadj(Gk) that are adjacent to any node of a 
selected node except for the selected nodes. After obtaining the K-terminal, 
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SYREL (Hariri and Raghavendra, 1987) is applied to compute the reliability. 
The proposed heuristic algorithm is to maximize K-terminal reliability of a DS. 
The detailed steps for KTR are described in Appendix 1. 
 
ILLUSTRATIVE EXAMPLES 
 
Example 1 
Figure 2 illustrates the topology of a DS with eight nodes and eleven links. The 
problem involves determining a subset, K-terminal, of the DS which includes 
some of the nodes v1, v2, …, v8 whose reliability is maximal. 
 
 

Fig. 2. The DS with eight nodes and eleven links. 
 

 v2     v3      v4e2,3    e3,4

v1   e1,2    v8    e4,8         v5

 v7            v6

e6,7

e1,7         e6,8

e4,6

e4,5

e5,6

p1,2=0.89  p1,7=0.81
p1,8=0.93  p2,3=0.85
p3,4=0.91  p4,5=0.82
p4,6=0.83  p4,8=0.96
p5,6=0.87  p6,7=0.84
p6,8=0.88

e1,8

 
 
 
In Step 1, each node’s weight is evaluated using Eq. (1). The weight of v1, 
v2, …, and v8 are 0.998537, 0.9835, 0.9865, 0.9998898, 0.9766, 0.9995756, 
0.9696 and 0.999664, respectively. Therefore, v4 is the node with maximal 
weight and is served as starting node for obtaining an adequate K-terminal. 
Notably, Gk is {v4}. 

In Step 2, because εs j,  does not exist, set E G kε( ) to empty. 

In Step 3, each link’s weight is evaluated using Eq. (2). 
In Step 4, let Vtmp = V G kε( )

 = ∅ , w VG k
( ) = w(vs), w EG k

( ) = 0. 
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In Step 5, for the set of nodes, (Vadj(Gk) Υ Vtmp)={v3, v5, v6, v8}, find vi, in 
(Vadj(Gk) Υ Vtmp). Using Eq. (5) to evaluate weight, we have w({v4, v3}) = 
1.051885, w({v4, v5}) = 1.091156, w({v4, v6}) = 1.135257 and w({v4, v8}) = 
1.132041, respectively. Because the weight of {v4, v6} is maximum, v6 is 
appended to Gk. Notably, Gk is {v4, v6}, Vtmp = {}. The algorithm goes back 
step 5 and continues. 
In Step 5, Vadj(Gk) = {v3, v5, v7, v8} and Vtmp = {}. Therefore, (Vadj(Gk) Υ Vtmp) = 
{v3, v5, v7, v8}. Using Eq. (5) to evaluate weight, we have w({v4, v6, v3}) = 
0.776335, w({v4, v6, v5}) = 1.08682, w({v4, v6, v7}) = 0.752197 and w({v4, v6, 
v8}) = 1.128572, respectively. Because the weight of {v4, v6, v8} is maximum, 
v8 is appended to Gk. Notably, Gk is {v4, v6, v8}. 
In Step 6, the reliability of the K-terminal {v4, v6, v8} is computed using 
SYREL. We have R({v4, v6, v8}) = 0.9966876 which has the maximum 
reliability under Krequest. The number of reliability computation is exactly one. 
The result is the same as in the K-terminal, which is derived by an exhaustive 
method. 
 
Example 2 
 
Figure 3 illustrates the topology of a DS with six nodes and eight links. The 
problem involves determining a subset, K-terminal, of the DS which includes 
some of the nodes v1, v2, …, v6 whose reliability is maximal. 
 
 

Fig. 3. The DS with six nodes and eight links. 
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In Step 1, after evaluating each node’s weight using Eq. (1), v5 is the heaviest 
node and is served as starting node for obtaining an adequate K-terminal. Note 
that Gk is {v5}. 

In Step 2, after finding εs j, , we have E G kε( )
={ ε5 2, }. 

In Step 3, each link’s weight is evaluated using Eq. (2) and each εs j,  in E Gkε( )
 

is evaluated using Eq. (3) 
In Step 4, let Vtmp = V G kε( )= {v2}, w VG k

( ) = w(vs), w EG k
( ) = 0. 

In Step 5, for sets of nodes, Vadj(Gk) = {v3, v4, v6} and Vtmp = {v2}, find vi, in 
(Vadj(Gk) Υ Vtmp). Using Eq. (5) to compute the weight, we have w({v5, v3}) = 
1.079026, w({v5, v4}) = 0.1.146226, w({v5, v6}) = 1.131129 and w({v5, v2}) = 
1.093191. Because the weight of {v5, v4} is maximum, v4 is appended to Gk. 
Notably, Gk is {v5, v4}. 
In Step 6, the reliability of the K-terminal {v5, v4} is computed using SYREL. 
We have R({v5, v4}) = 0.9452258 which has the maximum reliability under 
Krequest. The number of reliability computation is exactly one. 
The result is the same as in the K-terminal, which is derived by an exhaustive 
method. 
 
COMPARISON AND DISCUSSION 
 
Results obtained from our algorithm were compared with those of exhaustive 
method and random method. Although capable of yielding the optimal solution, 
conventional techniques such as exhaustive method cannot effectively reduce the 
reliability count. An application occasionally requires an efficient algorithm to 
compute reliability owing to resource considerations. Under this circumstance, 
deriving the optimal reliability may not be feasible. Instead, an efficient algorithm 
yielding approximate reliability is preferred.  
 
In contrast to the computer reliability problem, which is static-oriented, the KTR 
problems in the DS are dynamic-oriented since many factors, e.g. DS topology, link 
reliability, and the number of paths between each node, can significantly affect the 
efficiency of the algorithm(Aziz, 1997; Nakazawa, 1981; Makri and Psillakis, 
1997). Next, the accuracy and efficiency of the proposed algorithm are verified by 
implementing simulation programs C language that are executed on a Pentium 133 
with 16M-DRAM on MS-Windows 95. We use many network topologies and 
generated several hundreds of data for simulation. The reliability of each link was 
generated using a random number generator. For verifying the sensitivity of our 
proposed algorithm, two data categories were given in different ranges. For the link 
reliability, we considered the following range: 0.0~1.0, 0.5~1.0 and 0.8~1.0. For 
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the number of nodes in K-terminal, we consider that the krequest is equal to 2, 3 and 
4, respectively. Table 1 (Appendix) presents the data on the results obtained using 
different methods for various DS topologies. In contrast to the exhaustive method, 
the number of reliability computations grew rapidly when the DS topology size is 
increased.  
 
Table 1. Comparison with Other Methods Under the Range of Link Reliability in 
0.8 ~ 1.0. 
 

size exhaustive method RM & PM RM PM 
N e 

Krequest Max_Rel NRC time(sec) NRC time(sec) absolute err absolute err 
12 21 4 0.9993535 1365 39.285 1 0.0288 0.2569579 0.0002387 
12 21 3 0.9996854 220 8.462 1 0.0385 0.1513619 0 
12 21 2 0.9999972 66 1.318 1 0.0199 0.2487065 0 
19 29 4 0.9997547 3876 397.573 1 0.1026 0.1054234 0 
19 29 3 0.9999088 912 49.689 1 0.0545 0.0791060 0 
19 29 2 0.9999860 171 4.395 1 0.0257 0.0574796 0 
25 31 4 0.9997928 12650 517.747 1 0.0409 0.4111645 0 
25 31 3 0.9997537 2300 64.615 1 0.0281 0.5188945 0.0000882 
25 31 2 0.9999160 300 5.714 1 0.0190 0.5145090 0 
30 30 4 0.8558104 27405 224.175 1 0.0081 0.5393191 0 
30 30 3 0.9207547 4060 29.780 1 0.0073 0.5715915 0 
30 30 2 0.9984403 435 2.967 1 0.0068 0.6360298 0 
30 31 4 0.9462816 27405 235.549 1 0.0086 0.6404305 0 
30 31 3 0.9769668 4060 30.824 1 0.0076 0.5076126 0 
30 31 2 0.9955244 435 3.022 1 0.0069 0.5205490 0 
Average  5710.7 107.7 1 0.02688 0.3839420 0.0000218 

 
n: the number of nodes in G, n = |V|    e: the number of links in G, 
e = |E| 
NRC: the number of reliability computation   Krequest: the order of K-terminal 
Max_Rel: maximum reliability satisfies our constraints  RM: random method 
PM: the proposed method 
 
 
Tables 2 and 3 (Appendix) list the results obtained using the random method and 
our proposed method for three different topologies (ring, bridge, hyper-cube) with 
eight nodes, respectively. These data show that the proposed method is more 
effective than the random method. When the DS topology and the link reliability are 
fixed, the order of K-terminal affects the average exact KTR solution. For example, 
the average exact KTR solution when Krequest is set to four is worse than when Krequest 
is set to three or two. Without a loss of generality, the ratio of the average relative 
error was negatively correlated with the link reliability range and the number of links. 
The complexity of exhaustive method is O(nmin(k,n-k) × m2), where e denotes the 
number of edges, n represents the number of nodes, k represents the order of 
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K-terminal and m represents the number of paths of a selected K-terminal (Hariri 
and Raghavendra, 1987). In the proposed algorithm, in the worst case, the 
complexity of evaluating the weight of each node is O(e) and each link is O(e × n), 
selecting an adequate K-terminal is O(n3), and computing the reliability of the 
K-terminal using SYREL is O(m2) (Hariri and Raghavendra, 1987). Therefore, the 
complexity of the proposed algorithm is max(O(n3), O(m2)). 
 

Table 2. Random Method for Three DS Topologies with Eight Nodes. 
 

T(s) Lr Krequest AES HitR  ARErrR UpErrBnd UpErrBndR ARErrRlnk ARErrRT 
4 0.326084 0 0.763126 0.417357 0.957736   
3 0.503812 0 0.829212 0.733091 0.964845   

0.
0~

1.
0 

2 0.886631 20 0.644896 0.842723 0.949601 0.745745  
4 0.638387 0 0.327150 0.320436 0.479467   
3 0.732953 0 0.355200 0.381432 0.555065   

0.
5~

1.
0 

2 0.963593 10 0.339181 0.457403 0.568255 0.340510  
4 0.897291 0 0.062130 0.081107 0.091602   
3 0.951859 0 0.088845 0.128657 0.140203   

R
in

g 
(n

8e
8)

 

0.
8~

1.
0 

2 0.987630 0 0.065677 0.138905 0.141486 0.072217 0.386157 
4 0.667060 0 0.532687 0.607786 0.807201   
3 0.716601 0 0.713274 0.890054 0.924501   

0.
0~

1.
0 

2 0.936734 0 0.369311 0.692768 0.734436 0.538424  

4 0.937299 0 0.195759 0.316703 0.392177   
3 0.965475 0 0.149418 0.318579 0.319403   

0.
5~

1.
0 

2 0.984210 0 0.094193 0.208457 0.214969 0.146457  
4 0.991387 0 0.042027 0.065841 0.065841   
3 0.997596 0 0.027991 0.056993 0.057117   

B
ri

dg
e 

(n
8e

11
)(

Fi
g.

 3
.) 

0.
8~

1.
0 

2 0.998858 0 0.018207 0.047118 0.04732 0.029408 0.23096 
4 0.558898 0 0.561959 0.483877 0.951321   
3 0.759641 10 0.338054 0.395725 0.748639   

0.
0~

1.
0 

2 0.952303 0 0.388869 0.029266 0.648013 0.429627  
4 0.956241 0 0.048489 0.094668 0.096577   
3 0.972747 10 0.048654 0.103147 0.104987   

0.
5~

1.
0 

2 0.996003 20 0.041780 0.148503 0.151313 0.046308  
4 0.997204 10 0.003449 0.008865 0.008914   
3 0.998569 0 0.004190 0.009181 0.009193   

H
yp

er
cu

be
 (

n8
e1

2)
 

0.
8~

1.
0 

2 0.999521 0 0.002618 0.005022 0.005032 0.003419 0.159785 
Average  2.9 0.261346 (0.295691) (0.412415) 0.261346 0.261346 

 
T(s): represents the topology (size) of a DS. 
Lr : the range of link’s reliability, the reliability is obtained by random generator. 
AES : the value of average exact solution whose value is  
     [ ( ]/( )Σ D SR opt total sim ulation cases . 

HitR : the ratio of obtaining exact solution. 
ARErrR : the value of ( [ ( / )])/( )Σ 1− D SR D SRapp opt total sim ulation cases . 
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UpErrBnd : the upper error bound whose value is  
           the max(DSRopt-DSRapp) in total simulation cases. 
UpErrBndR : the value of the max[(DSRopt-DSRapp)/ DSRopt] in total simulation 
cases. 
ARErrRlnk : the value of average of ARErrR which are in same Lr and T(s). 
ARErrRT : the value of average of ARErrR which are in same T(s). 
(.): denotes the value is just for reference 
DSRapp : approximation solution which obtained by running heuristic algorithm 
DSRopt : optimal solution which obtained by running exhaustive search algorithm. 

 
Table 3. The Proposed Method for Three DS Topologies with Eight Nodes. 

 

T(s) Lr Krequest AES HitR  ARErrR UpErrBnd UpErrBndR ARErrRlnk ARErrRT 
4 0.326084 90 0.021321 0.020473 0.106605   
3 0.503812 80 0.023556 0.049896 0.099507   

0.
0~

1.
0 

2 0.886631 90 0.000429 0.003579 0.004288 0.015102  
4 0.638387 80 0.012382 0.048862 0.101626   
3 0.732953 60 0.030009 0.086259 0.127607   

0.
5~

1.
0 

2 0.963593 90 0.002623 0.025769 0.026230 0.015005  
4 0.897291 50 0.007564 0.030080 0.033039   
3 0.951859 90 0.000397 0.003841 0.003970   

R
in

g 
(n

8e
8)

 

0.
8~

1.
0 

2 0.987630 90 0.000158 0.001548 0.001577 0.002706 0.010938 
4 0.667060 70 0.021885 0.056531 0.151792   
3 0.716601 90 0.007242 0.016407 0.072416   

0.
0~

1.
0 

2 0.936734 90 0.001230 0.012162 0.012595 0.010129  

4 0.937299 60 0.011850 0.060240 0.063696   
3 0.965475 50 0.011232 0.041352 0.042474   

0.
5~

1.
0 

2 0.984210 70 0.001616 0.009778 0.010454 0.008233  
4 0.991387 30 0.007660 0.018952 0.018994   
3 0.997596 80 0.001346 0.008294 0.008323   

B
ri

dg
e 

(n
8e

11
)(

Fi
g.

 3
.) 

0.
8~

1.
0 

2 0.998858 100 0.0 0.0 0.0 0.003002 0.007121 
4 0.558898 80 0.011515 0.070260 0.092964   
3 0.759641 70 0.016015 0.070496 0.092135   

0.
0~

1.
0 

2 0.952303 70 0.006012 0.035770 0.037123 0.011181  
4 0.956241 40 0.008914 0.027166 0.029424   
3 0.972747 90 0.000588 0.005626 0.005883   

0.
5~

1.
0 

2 0.996003 70 0.000746 0.005544 0.005570 0.003416  
4 0.997204 40 0.001738 0.004195 0.004207   
3 0.998569 70 0.000139 0.000810 0.000810   

H
yp

er
cu

be
 (

n8
e1

2)
 

0.
8~

1.
0 

2 0.999521 90 0.000011 0.000117 0.000117 0.000629 0.005075 
Average  73.3 0.007711 (0.026445) (0.042719) 0.007711 0.007711 

The mean of notations is described in footnote of Table 2. 
The value of AES is same as Table 2. 
 
Table 4 lists the results obtained using an exhaustive method and our proposed 
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method for three different topologies (ring, bridge, hyper-cube) with eight nodes, 
respectively. 

 
Table 4. The Average Exhaustive Method Execution Time and the Proposed 

Method for Three DS Topologies with Eight Nodes. 
 

    exhaustive metohd  the proposed method 
T(s) Lr Krequest  AT(sec) ATlnk(sec) ATT(sec)  AT(sec) ATlnk(sec) ATT(sec) 

4  0.544    0.008   
3  0.313    0.006   

0.
0~

1.
0 

2  0.121 0.3260   0.004 0.0059  
4  0.544    0.008   
3  0.297    0.005   

0.
5~

1.
0 

2  0.121 0.3205   0.004 0.0058  
4  0.549    0.008   
3  0.319    0.006   

R
in

g 
(n

8e
8)

 

0.
8~

1.
0 

2  0.132 0.3333 0.3266  0.005 0.0061 0.0059 

4  0.791    0.011   
3  0.396    0.007   

0.
0~

1.
0 

2  0.148 0.4451   0.005 0.0079  

4  0.791    0.011   
3  0.429    0.008   

0.
5~

1.
0 

2  0.143 0.4542   0.005 0.0080  
4  0.775    0.011   
3  0.423    0.008   

B
ri

dg
e 

(n
8e

11
)(

Fi
g.

 3
.) 

0.
8~

1.
0 

2  0.137 0.4451 0.4481  0.005 0.0078 0.0079 
4  1.610    0.023   
3  0.868    0.016   

0.
0~

1.
0 

2  0.280 0.9194   0.010 0.0162  
4  1.621    0.023   
3  0.879    0.016   

0.
5~

1.
0 

2  0.286 0.9286   0.010 0.0164  
4  1.615    0.023   
3  0.863    0.015   

H
yp

er
cu

be
 (

n8
e1

2)
 

0.
8~

1.
0 

2  0.286 0.9212 0.9231  0.010 0.0162 0.0163 
Average  0.5659 0.5659 0.5659  0.0100 0.0100 0.0100 

AT : the seconds of average execution time, 
    AT = ( ( ))/( )Σ execution tim e totalsim ulation case . 
ATlnk : the seconds of average execution time of same Lr and T(s). 
ATT : the seconds of average execution time of same T(s). 
The mean of other notations is described in footnote of Table 2. 
 
These data show that the proposed method is more efficient than the exhaustive 
method. In the random method, which obtains the exact solution below 3%, the 
average error from exact solution surpasses 0.26. In our simulation case, the 
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reliability count for the proposed algorithm is exactly one. The exact solution can 
be obtained above 73.3%, in which the average error from exact solution is under 
0.008. In a few cases, an adequate node which has arrived for selected node set 
through many paths and the length of a great number of those paths exceeds two, the 
node may be lost when using our equation for computing link’s weight. Notably, the 
proposed algorithm cannot obtain the exact solution. 
 
CONCLUSIONS 
 
Computing DS reliability is generally NP-hard. In this work, we presented a 
heuristic algorithm to obtain a K-terminal with sub-optimal reliability. The 
reliability computation in our algorithm is only exactly one. Therefore, KTR in 
the DS can provide the desired performance. 
 
In addition, the algorithm proposed herein is compared with an exhaustive 
method and a random method for various topologies. According to that 
comparison, the proposed algorithm is more efficient in terms of execution time 
for a large DS. When the proposed method fails to provide an exact solution, the 
error from the exact solution is only slight. 
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Appendix 1 
 
This appendix describes the detail steps of KTR. 
Algorithm KTR 
Step 0 Initialize, read system parameters: n, e; read the order Krequest of 
K-terminal. 
Random generate probability pi,j of each ei,j in G. 
Step 1 Evaluate the weight of each node using Eq. (1) and choose the heaviest 
one as the starting node, say vs, for deriving an adequate K-terminal. Notably, 
Gk is initialized to {vs}. 

Step 2 Find each εs j,  and insert it into a set E G kε( ) of εs j, . 

Step 3 Evaluate the weight of each link using Eq. (2). 

Evaluate the weight of each εs j, in E Gkε( ) using Eq. (3). 

Step 4 Let Vtmp = V G kε( )
.   /* Vtmp denotes a set of nodes */ 

Let w VG k
( ) = w(vs). 

Let w EG k
( ) = 0. 

Step 5 Dowhile (|Gk| <Krequest) 
/* find an adequate vi after evaluating each w(Gk Υ {vi}) using Eq. (5)*/ 

Find vi, such that w(Gk Υ {vi}) = max{w(Gk Υ {vi}) | vi ∈(Vadj(Gk) Υ Vtmp)}. 
Let Gk = Gk Υ {vi}. 
Let w VGk

( ) = w VGk
( ) + w(vi). 

Let w EG k
( ) =w EG k

( ) + Σw ei j
v V v V e Ej G k i G k i j G k

( ),
, , ,∈ ∉ ∉

. 

Let Vtmp = ∅ . 
∀ εs j, ∈E G kε( )

, let w(εs j, ) = 0. 

End_Dowhile 
Step 6 Compute R(Gk) using SYREL, output the K-terminal Gk and its 
reliability. 
End KTR 
 


