DIAGNOSING ANGINA USING A SIMPLE NEURAL NETWORK ARCHITECTURE

Authors

  • Bulgiba AM

Abstract

The aim of the study was to research the use of a simple neural network in diagnosing angina in patients complaining of chest pain. A total of 887 records were extracted from the electronic medical record system (EMR) in Selayang Hospital, Malaysia. Simple neural networks (simple perceptrons) were built and trained using a subset of 470 records with and without pre-processing using principal components
analysis (PCA). These were subsequently tested on another subset of 417 records. Average sensitivity of 80.75% (95% CI 79.54%, 81.96%), specificity of 41.64% (95% CI 40.13%, 43.15%), PPV of 46.73% (95% CI 45.20%, 48.26%) and NPV of 77.39% (95% CI 76.11%, 78.67%) were achieved with the simple perceptron. When PCA pre-processing
was used, the perceptrons had a sensitivity of 1.43% (95% CI 1.06%, 1.80%), specificity of 98.32% (95% CI 97.92%, 98.72%), PPV of 32.95% (95% CI 31.51%, 34.39%) and NPV of 61.33% (95% CI 59.84%, 62.82%). These results show that it is possible for a simple neural network to have respectable sensitivity and specificity levels for angina.

Downloads

Downloads

Published

2006-06-26

Issue

Section

Research article