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ABSTRACT 

The widespread use of AI-generated imagery, enabled by advanced generative models, poses increasing 

challenges to digital content verification and authenticity. This study evaluates the performance of four widely 

adopted convolutional neural network (CNN) architectures—ResNet50, EfficientNetV2B0, InceptionV3, and 

VGG16—for classifying images as AI-generated or human-created. A balanced dataset of approximately 80,000 

labeled images was used, and all models were trained using a consistent transfer learning pipeline with ImageNet 

pre-trained weights. Images were resized according to model-specific input dimensions and preprocessed using 

architecture-appropriate normalization methods. The dataset was split using an 80/10/10 ratio for training, 

validation, and testing, and each model was trained for eight epochs without data augmentation to focus on 

baseline performance. All data splits were evaluated using accuracy, loss, precision, recall, F1-score, and AUC. 

Among the models being assessed, ResNet50 achieved the highest performance on validation and test sets, with a 

test accuracy of 96.98% and the lowest test loss of 0.0893, confirming its superior generalization. The consistent 

alignment between validation and test metrics supports the robustness of the training configuration. These 

findings establish a reliable performance baseline for CNN-based AI image detection and contribute to the 

broader field of multimedia forensics and trustworthy AI. 

 

Keywords: AI-generated images; deepfake detection; convolutional neural networks; transfer learning; digital 

forensics; deep learning 

1. INTRODUCTION 

The proliferation of generative artificial intelligence (AI) technologies, particularly Generative Adversarial 

Networks (GANs) and diffusion-based models, has created synthetic images that closely mimic accurate human-

generated visuals. While these technologies present opportunities in art, education, and entertainment, they also 

pose considerable risks in authenticity, ethics, and security domains. As the line between real and synthetic content 

becomes increasingly blurred, developing robust methods to distinguish AI-generated images from authentic ones 

has become a pressing concern [1, 2]. 

AI-generated visuals are now frequently employed in misinformation campaigns, deep-fake media, identity fraud, 

and automated social engineering attacks. Deepfakes, for instance, can convincingly impersonate real individuals, 

leading to political manipulation and reputational harm [3-5]. The misuse of synthetic faces for online scams and 

fraud has prompted research in AI-based face fraud detection using deep CNN models [6]. Underscoring the need 

for accurate classification techniques. Beyond security, AI-generated images raise concerns in media integrity and 

creative industries. Fabricated visuals can erode public trust when disseminated as authentic journalistic evidence 

or social media content. Furthermore, using copyrighted human-created data to train generative models challenges 

traditional frameworks for intellectual property protection. 

To address these challenges, recent studies have explored the potential of convolutional neural networks (CNNs) 

in detecting synthetic images. CNN-based classifiers have demonstrated robust performance on benchmark 

datasets such as CIFAKE and DeepFake image collections. For instance, DenseNet121 achieved a detection 

accuracy of 98.49% in distinguishing real from AI-generated images [7] , while other studies have shown the 

effectiveness of ResNet and VGG models with comparable performance [8]. Furthermore, the use of explainable 

AI tools such as Grad-CAM has provided insights into the feature-level decision-making of CNN models when 

identifying synthetic visual artifacts [9]. 

file:///C:/Users/User/Downloads/P125852@siswa.ukm.edu.my
mailto:snhsabdullah@ukm.edu.my


     

 

51 

 

While recent advancements have leveraged convolutional neural networks (CNNs) to detect AI-generated 

imagery, most studies either focus on a single model or lack consistent experimental conditions for comparative 

analysis. Furthermore, there is limited research evaluating multiple pre-trained CNN architectures on a curated 

and balanced dataset specifically designed to contrast human-created and AI-generated visual content. Prior 

comparisons often vary in preprocessing methods, training pipelines, or dataset sources, leading to inconclusive 

or biased performance interpretations. This creates a critical gap in understanding the relative strengths of modern 

CNN models when evaluated under a uniform and controlled framework. Our study addresses this gap by 

comparing four widely used CNN architectures—ResNet50, EfficientNetV2B0, InceptionV3, and VGG16—

using a standardized transfer learning setup and a balanced benchmark dataset. The goal is to establish a 

reproducible performance baseline for AI-content detection. Figure 1 illustrates the overall problem addressed in 

this study, from the emergence of hyper-realistic AI-generated images to the need for standardized CNN 

benchmarking. 

Fig. 1 A visual representation of the problem statement, showing the progression from generative AI 

advancement to the proposed solution using a comparative CNN benchmark. 

Contributions to this work are as follows: 

• A comparative benchmark is presented for four prominent convolutional neural network architectures—

ResNet50, EfficientNetV2B0, InceptionV3, and VGG16—on the binary classification task of distinguishing AI-

generated images from human-created ones. 

• The evaluation is conducted under a standardized experimental framework, including uniform preprocessing, 

training configuration, and visualization of training dynamics through accuracy and loss curves. 

• The study offers practical insights into the generalization capabilities of pre-trained CNNs and their applicability 

in content verification and AI-generated media detection, establishing a reliable baseline for future research in the 

field. 

2. RELATED WORK 

With the rise of generative models such as GANs and diffusion transformers, the ability to detect synthetic media 

has become a prominent research area. Several studies have leveraged convolutional neural networks (CNNs) and 

transfer learning to tackle the challenge of distinguishing AI-generated images from real ones [10-14]. 

Complementing these individual model evaluations, researcher [15] conducted a comprehensive systematic 

literature review of deep learning-based video authentication methods. Their review synthesized 99 peer-reviewed 

studies from 2019 to 2024, highlighting the application of CNNs, RNNs, GANs, and LSTM models for detecting 

video tampering, deepfakes, and other synthetic media. They emphasized the importance of integrating deep 
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learning with forensic and ethical frameworks to maintain the credibility of digital content, particularly in legal 

and security contexts. This review reinforces the relevance of CNN-based approaches for multimedia authenticity, 

extending the case for their application in image-based AI detection. 

Recent efforts have benchmarked standard CNN architectures like ResNet, VGG, and EfficientNet on curated 

datasets for AI-image detection tasks. For example, [7] compared ResNet50, EfficientNetB0, and DenseNet121 

on the CIFAKE dataset and found that DenseNet121 outperformed others with 98.49% accuracy. Similarly, [8] 

demonstrated that transfer learning using models like VGGNet and DenseNet significantly improves classification 

performance for AI-generated images, with DenseNet achieving 97.74% accuracy. 

 

In related efforts focusing on vision-based behavioral analysis, the study [16] using head pose and eye tracking 

detection, a lightweight computer vision model was proposed to measure student concentration levels. Their work 

emphasizes leveraging visual cues to infer semantic context from images and videos. This concept parallels the 

challenge of discerning AI-generated content, where subtle visual artifacts and gaze inconsistencies can be telling 

features. While their study targets educational monitoring, the underlying methodologies demonstrate how CNN-

based feature extraction and pose estimation can be adapted to various classification tasks, including AI-content 

verification. Another notable study by [9] explored using Grad-CAM in conjunction with CNN and Vision 

Transformer (ViT) architectures for explainability, achieving 96.31% accuracy on synthetic image detection tasks. 

Their work underscores the role of explainable AI in improving the trust and interpretability of AI-content 

detectors. 

 

Study [17] proposed a closely related hybrid framework, combining ResNext50 for spatial feature extraction with 

BiLSTM for modeling temporal dependencies in manipulated facial video detection. Their study demonstrated 

the significance of incorporating temporal dynamics to enhance model robustness against deepfake attacks, 

particularly across benchmark datasets such as FaceForensics++, DFDC, and Celeb-DF. The hybrid model 

achieved superior accuracy (96.11%) and AUC (98.89%) compared to standalone CNNs, reinforcing the 

advantage of multi-stage architectures for authenticity verification tasks. While their approach focused on face 

authentication in videos, the underlying principles of combining spatial and sequential modeling directly inform 

our current work in detecting AI-generated still images. To overcome the limitations of spatial-only models, a 

hybrid architecture combining EfficientNetB7 and LSTM was employed, leveraging both spatial and temporal 

dependencies for enhanced detection [18]. In related comparative work, [19] evaluated CNN, VGG19, and 

ResNet50 on the AI-ArtBench dataset to distinguish human-created from AI-generated artistic images. CNN 

slightly outperformed the others, suggesting that task-specific architecture tuning may yield better generalization. 

Beyond AI-art detection, other domains have explored similar CNN-based architectures for visual forgery and 

synthetic content identification. For example, [20] employed ensembles of CNNs—including Inception-V3 and 

ResNet-18—for detecting portrait photography splicing, showing how these architectures generalize across 

synthetic image domains.  Lastly, a comprehensive review by [21] assessed VGG19, ResNet50, and EfficientNet-

B0 in synthetic image detection, emphasizing the importance of real-time applicability and dataset realism, 

particularly with the CIFAKE dataset. 

The above studies demonstrate that CNN-based models, especially when combined with transfer learning and 

interpretability tools, provide a solid foundation for distinguishing AI-generated images from authentic content. 

However, variations in dataset types, image domains, and model-tuning strategies often lead to inconsistent 

results, highlighting the need for further benchmarking and architecture-specific evaluations. 

3. METHODOLOGY 

3.1 Dataset 

We evaluate our approach to the “AI vs. Human-Generated Images” dataset from Kaggle [22], which was created 

through a collaboration between Shutterstock (for authentic images) and DeepMedia (for AI-generated photos). 

The dataset provides a balanced collection of 79,950 images, split evenly between two classes: human-generated 

(authentic) images and AI-generated (synthetic) images (39,975 images per class). Each actual image in the dataset 

is paired with a corresponding AI-generated counterpart, ensuring the content is directly comparable between 

classes. All photos are high-quality and diverse, including various subjects (approximately one-third of the actual 

images contain human faces) to comprehensively represent the distinction between authentic and generated 

content. No missing or corrupt files were reported in this dataset, indicating it is clean and suitable for training. 
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For our experiments, we used the provided training set. We reserved a portion of it for validation, as described 

below, since the official test set did not include ground-truth labels for performance evaluation. 

3.2 Data Preprocessing 

All human-created and AI-generated images were resized to match the input requirements of each model: 299×299 

for InceptionV3 and 224×224 for ResNet50, EfficientNetV2B0, and VGG16. Preprocessing was managed using 

TensorFlow’s ImageDataGenerator with appropriate normalization for each model, which was consistent with 

their ImageNet training. No data augmentation was applied, ensuring a fair baseline comparison. The dataset was 

split into 80% training, 10% validation, and 10% testing, maintaining class balance. This 80/10/10 strategy is 

widely adopted in deep learning literature to ensure sufficient data for model training, enable effective 

hyperparameter tuning, and provide an unbiased evaluation of generalization performance [23, 24]. A batch sized 

32 was used, and images were shuffled during training. Labels were binary (0 for Human-created, 1 for AI-

generated) and automatically one-hot encoded for classification. To formally describe the image processing 

pipeline, each input image x is passed through the convolutional neural network (CNN) to extract spatial features 

as follows: 

𝑭𝒊 = ResNet50(𝑰𝒊)                                                                           (1) 

where: 

• 𝐼𝑖  : is the input image for the ithsample 

• ResNet50(⋅): CNN feature extractor used here as a representative model 

• 𝑭𝒊: is the resulting feature map extracted by ResNet50. 

To formalize the feature extraction process, we represent the convolutional neural network operator using 

ResNet50 as an illustrative example, given its widespread adoption and robust architecture. While the comparative 

performance of all four models is evaluated in later sections, ResNet50 is used here as the default CNN notation 

for clarity in the upcoming methodological equations. 

3.3 Dataset Analysis 

Several exploration analyses were conducted to better understand the dataset’s characteristics and inform the 

modeling strategy. 

3.3.1 Class Distribution  

As illustrated in Figure 2, the dataset exhibits a balanced class distribution, with approximately 40,000 images in 

each category—Human-Created and AI-generated. This ensures that the model receives equal representation from 

both classes, minimizing bias during training. 
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Fig. 2 Label distribution of Human-Created and AI-generated images in the dataset. 

3.3.2 Visual Inspection  

Figure 3 displays sample images from each class. Human-created images exhibit realistic textures, lighting, and 

composition. In contrast, AI-generated images often display heightened vibrancy, sharpness, or idealized 

symmetry, which can be distinguishing features for classification models. 

 

Fig. 3 Example images from both classes: AI-generated (top row) and Human-Created (bottom row). 

3.3.3 Pixel Intensity Distribution 

Histograms of grayscale pixel intensity reveal a notable difference in distribution. AI-generated images show a 

sharp spike near the maximum intensity value (255), indicative of high-contrast, digitally enhanced regions. 
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Conversely, human-created images exhibit a bell-shaped distribution centered around mid-range intensities, 

consistent with natural image capture as shown in Figure 4. 

 

Fig. 4 Pixel intensity distribution for AI-generated (left) and Human-Created (right) images. 

3.3.4 Color Channel Distribution   

RGB color histograms demonstrate distinct trends as shown in Figure 5. AI-generated images have pronounced 

peaks in the red and blue channels, often near high pixel values, suggesting intense saturation. In contrast, human-

created images display more balanced and smoothly distributed color intensities across all channels. These 

differences reflect the synthetic color characteristics often introduced by generative models. 

 

Fig. 5 RGB color distribution comparison between AI-generated (left) and Human-Created (right) images. 

The dataset presents visually and statistically measurable differences between the two image types. These 

observations support the hypothesis that AI-generated images possess quantifiable patterns, such as sharp contrast 

and saturated colors, which may enhance the separability of classes in the learned feature space. 

3.4 Model Architectures and Transfer Learning 

We conducted a comparative study using four deep convolutional neural network (CNN) architectures: 

InceptionV3, ResNet50, EfficientNetV2B0, and VGG16. These models were selected to represent a diverse 

spectrum of modern CNN designs—from the inception module-based architecture (InceptionV3) to the residual 

learning framework of ResNet50, to the compound scaling strategy of EfficientNetV2B0, and the traditional deep-

layered structure of VGG16. All models were implemented using the Keras Applications library with pre-trained 

ImageNet weights. Leveraging pre-trained models provides a robust foundation for transfer learning, allowing the 
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networks to benefit from generalized visual features learned on large-scale datasets, which in turn accelerates 

convergence and enhances performance in new tasks. 

For each model, the original top classification layer (specific to ImageNet’s 1000 classes) was removed, 

and the pre-trained convolutional base was used as a fixed feature extractor. All convolutional and pooling layers 

were frozen during the initial training phase to retain the learned hierarchical feature representations. A custom 

classification head was appended on top of each frozen base. This head consisted of a Global Average Pooling 

layer to reduce the spatial feature map into a single feature vector, followed by a fully connected 512-unit dense 

layer with ReLU activation, a dropout layer (30%) for regularization, a 256-unit dense layer with ReLU, another 

30% dropout, and finally a sigmoid-activated output neuron for binary classification. 

To formally represent the classification mechanism used across all models, we denote the input image as 

𝐼𝑖 . The image is passed through the convolutional backbone (e.g., ResNet50), followed by the classification head 

f(⋅) , and then processed by the sigmoid activation function σ(⋅) to obtain the predicted probability 𝑝�̂� for the 

positive class (AI-generated): 

𝐩�̂� = 𝛔 (𝐟(ResNet50(𝐈𝐢)))                                                       (2) 

Where: 

• 𝐼𝑖  is the input image for the 𝑖th sample, 

• f(⋅) denotes the custom classification head applied after ResNet50, 

• 𝑝�̂� is the predicted probability that image 𝐼𝑖  belongs to the AI-generated class, 

• σ(⋅) is the sigmoid activation function, defined as σ(z) =
1

1+e−z. 

This formulation reflects the forward pass of the binary classifier. Although all four CNN architectures were 

evaluated under identical training conditions, we use ResNet50 in Equation (2) as a representative model due to 

its superior performance in later evaluation stages. The classification head architecture was kept identical across 

all models to ensure a fair comparison, with variation arising only from the differing dimensions of the extracted 

feature maps. This design isolates the influence of the base CNN architecture on classification performance, as 

illustrated in Figure 6. 

It should be noted that we did not perform extensive fine-tuning of the pre-trained convolutional layers in this 

phase. The base CNN weights remained frozen while training the new top layers. Given the relatively limited 

number of training epochs, this approach mitigates the risk of overfitting and capitalizes on the general features 

(edges, textures, shapes) already learned from ImageNet. In future work or extended training, one could optionally 

unfreeze some of the higher layers of the base model and fine-tune them on the dataset. Still, in our methodology, 

all feature extraction layers were kept fixed. 
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Figure 6: Comprehensive methodology framework for detecting AI-generated images using convolutional 

neural networks. 

3.4.1 Training Configuration 

All models were trained using a uniform configuration to ensure a fair and direct performance comparison across 

architecture. The key hyperparameters used during training are summarized in Table 1. Network weights were 

optimized using the Adam optimizer with default parameters: a learning rate of 0.001, β₁ = 0.9, and β₂ = 0.999. 

Adam was selected due to his adaptive learning rate capability and consistent performance across various visual 

recognition tasks. The binary cross-entropy loss function was appropriate for the binary classification problem 

and compatible with the sigmoid activation function at the output layer.  

Table 1. Summary of Training Hyperparameters Used Across All CNN Models 

Hyperparameter Value 

Optimizer Adam (learning rate = 0.001, β₁ = 0.9, β₂ = 0.999) 

Loss Function Binary Cross-Entropy 

Epochs 8 

Batch Size 32 

Image Size  InceptionV3    299×299 

Others             224 × 224 

Mixed Precision Training Enabled (mixed_float16 policy) 

Dataset Split 80% Training, 10% Validation, 10% Testing 

Class Mode Binary 
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To optimize the binary classification task, we employed the Binary Cross-Entropy (BCE) loss function. Using the 

predicted probability pî for the ith input image Ii and its true label yi ∈ {0,  1}, the BCE loss is defined as: 

𝓛BCE = −
𝟏

𝑵
∑ (𝒚𝒊 𝐥𝐨𝐠(𝒑�̂�) + (𝟏 − 𝒚𝒊) 𝐥𝐨𝐠(𝟏 − 𝒑�̂�))𝑵

𝒊=𝟏            (3) 

where: 

• N is the total number of training samples, 

• 𝑦𝑖  is the ground-truth label for the 𝑖th input image, 

• 𝑝�̂� = 𝜎 (𝑓(ResNet50(𝐼𝑖))) is the predicted probability output, computed by applying the classification 

head f(⋅) to the feature map extracted by ResNet50 from input image 𝐼𝑖   , followed by the sigmoid 

activation function 𝜎(⋅)  

• N is the total number of training samples. 

This loss function penalizes confident but incorrect predictions more strongly, promoting well-calibrated outputs 

during training. It is particularly well-suited for binary classification problems where outputs represent 

probabilities over two mutually exclusive classes. 

While 8 epochs are relatively modest, it allowed each model to learn the binary classification task with high 

accuracy, given the size of the dataset, and it was chosen considering computational resource limits. We enabled 

mixed precision training (FP16/FP32) throughout the training by setting the global policy to mixed_float16. This 

means model layers used 16-bit floating-point computations when safe while maintaining 32-bit precision for 

critical operations (such as the final loss calculation), effectively speeding up training and reducing memory usage 

without sacrificing accuracy. Mixed precision is leveraged to utilize modern GPU hardware (NVIDIA Tensor 

cores) for faster throughput. 

The training was conducted in mini batches of 32 images. At each epoch, the model iterated over all training 

batches (approximately 2,000 batches per epoch for ~64k training images). The performance was monitored on 

the validation set (approximately 500 batches for ~16k validation images). We tracked the accuracy of both 

training and validation sets in real-time to monitor learning progress. No early stopping or learning rate scheduling 

was applied during these 8 epochs, as we did not observe severe overfitting in this short training span. After 

training each model, we saved the model weights and history of performance metrics for later comparison. 

3.4.2 Evaluation Metrics 

To assess and compare the performance of the models, we evaluated each trained network on the held-out 

validation set (comprising 10% of the total dataset). Since the validation data was not seen during training, it 

provides an unbiased estimate of the model's generalization performance. The evaluation focused primarily on 

two standard metrics: 

• Accuracy: This represents the overall proportion of correctly classified images out of all validation 

images. It provides a high-level view of how well the model distinguishes between human-created and 

AI-generated content. Formally, accuracy is defined as: 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐓𝐏+𝐓𝐍

𝐓𝐏+𝐓𝐍+𝐅𝐍+𝐅𝐏  
            (4)  

Where: 

TP: True Positives (AI-generated images correctly classified) 

TN: True Negatives (Human-created images correctly classified) 

FP : False Positives (Human images incorrectly classified as AI-generated) 

FN: False Negatives (AI images incorrectly classified as human-created) 

• Validation Loss: This indicates the model's prediction error on unseen data. Lower loss values typically 

suggest better model calibration and confidence in decision-making. Unlike accuracy, the loss function 

captures how far off the predictions are from the actual labels, even when predictions are correct. 
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These metrics allow for a baseline comparison of the four CNN architectures. While accuracy reveals how many 

predictions are correct, validation loss provides deeper insight into prediction quality, especially when the model 

is overconfident or uncertain. We observed each model’s performance over 8 training epochs and tracked the 

evolution of both metrics to monitor learning behavior and detect signs of overfitting or underfitting. 

 

Table 2 reports training and validation accuracy, accuracy gap (difference between training and validation 

accuracy), and corresponding loss values. Lower validation loss and smaller accuracy gaps indicate better 

generalization. 

4. VISUALIZATION OF TRAINING AND RESULTS 

To complement the numerical evaluation, we incorporated tabular and visual tools to analyze and compare the 

training behavior of the evaluated CNN models. Table 2 summarizes each architecture's validation accuracy and 

loss, providing a concise performance overview under identical training conditions. These metrics serve as the 

foundation for interpreting the models’ generalization capabilities. In addition to the table, we employed 

visualization techniques—including training and validation accuracy/loss curves—to examine each model’s 

learning dynamics, convergence behavior, and stability over the eight training epochs. 

 

Table 2: Performance comparison of four pre-trained CNN architectures on the AI vs. Human image 

classification task. 

 

Model Train Acc Val Acc Train Loss Validation Loss 

ResNet50 98.62% 97.13% 0.0378 0.0861 

VGG16 96.28% 94.44% 0.1 0.1597 

InceptionV3 91.87% 90.91% 0.2004 0.2207 

EfficientNetV2B0 97.90% 96.11% 0.0554 0.1141 

 

4.1 Training Curves 

We plotted the training and validation accuracy and the training and validation loss for each model across the 

eight training epochs. These curves—shown in Figures 6 through 9—provide visual insight into model 

performance over time and are essential for detecting issues such as overfitting or underfitting. For instance, a 

widening gap between training and validation accuracy, or an increase in validation loss despite decreasing 

training loss, typically signals overfitting. Conversely, consistently low performance on training and validation 

sets may suggest underfitting. In our experiments, all four models exhibited steady improvements in accuracy and 

loss across epochs, indicating effective convergence and appropriate training duration. We plotted each model's 

training and validation accuracy and loss curves over the eight training epochs to visualize learning progression, 

detect overfitting or underfitting, and compare convergence behavior across architectures. These plots are 

presented in Figures 6 through 9. In Figure 7, ResNet50 demonstrates superior and stable learning behavior, 

achieving the highest validation accuracy (97.13%) and the lowest validation loss (0.0861). The curves are tightly 

aligned, showing no signs of overfitting. By contrast, Figure 8 shows that VGG16 experienced mild overfitting—

training accuracy and reached 96.28%, while validation accuracy settled at 94.44%, with a slightly higher 

validation loss (0.1597) than other models. This gap suggests the model began to specialize on the training data 

in later epochs. In Figure 9, InceptionV3 displayed the slowest convergence, comparatively lower accuracy 

(90.91%), and higher final loss (0.2004). This is likely due to its higher input resolution requirement (299×299) 

and deeper architecture, which may require more epochs for optimal convergence. Figure 10 illustrates the 

performance of EfficientNetV2B0, which converged well and reached 96.11% validation accuracy with a final 

loss of 0.1141, making it the second-best performer. 
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ResNet50 Results:  

 

Fig. 7: ResNet50 Accuracy & Loss over Epoch 

VGG16 results:  

 

Fig. 8: VGG16 Accuracy & Loss over Epochs 
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InceptionV3 results: 

 

Fig. 9: InceptionV3 Accuracy & Loss over Epoch 

 
EfficientNetV2B0 Results:  

 

 

 Fig. 10: EfficientNetV2B0 Accuracy & Loss over Epoch 

 

Overall, the visualizations support the tabular results and reinforce that ResNet50 offers the most robust and 

generalizable performance under the selected training configuration, followed by EfficientNetV2B0. 

Here are the accuracy and loss plots across 8 training epochs for each pre-trained CNN model: 

• InceptionV3 – Showed steady improvement in both training and validation accuracy. The validation 

accuracy remained close to training, indicating minimal overfitting. The loss values gradually decreased 

across epochs, though a slight rise in validation loss at the final epoch suggests minor instability near 

convergence. 
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• ResNet50 – Demonstrated the highest and most consistent performance. Both training and validation 

accuracy were substantial, with validation peaking above 97%. The loss curve showed smooth 

convergence with the lowest final validation loss among all models, confirming excellent generalization. 

• EfficientNetV2B0 – Exhibited assertive learning behavior, with training and validation accuracy 

improving in parallel. Loss curves showed a consistent decline, and the model maintained a low and 

stable validation loss, reflecting solid performance just behind ResNet50. 

• VGG16 – Achieved consistent accuracy gains across epochs, though the training curve flattened toward 

the end. The validation loss decreased steadily until epoch 5, after which it plateaued, indicating the 

model may have reached its learning capacity within the training window. 

These trends confirm that all four models are effectively learned from the data, with ResNet50 and 

EfficientNetV2B0 showing the best balance between accuracy and loss reduction, and InceptionV3 and VGG16 

performing reliably with modest overfitting control. 

4.2 Performance Comparison Bar Chart 

We constructed bar charts summarizing each model's final training and validation accuracy and loss values to 

enable a direct and intuitive comparison among the four evaluated CNN architectures. These are presented in 

Figure 11 and Figure 12, respectively. The models compared include InceptionV3, ResNet50, EfficientNetV2B0, 

and VGG16. These visualizations offer an immediate overview of each architecture’s generalization performance, 

robustness, and convergence behaviour under identical training conditions. 

As shown in Figure 11, ResNet50 achieved the highest training accuracy (98.62%) and validation accuracy 

(97.13%), demonstrating excellent generalization capacity with minimal overfitting. This strong performance can 

be attributed to the model's residual connections, which facilitate stable gradient flow and efficient convergence, 

even in deeper networks. The minimal accuracy gap between training and validation suggests a well-regularized 

and balanced model. 

EfficientNetV2B0, which incorporates compound scaling and improved activation mechanisms, achieved the 

second-highest accuracy (97.90% training, 96.11% validation), confirming its efficiency and strong feature 

extraction capabilities with fewer parameters. Its performance was also highly stable, with consistent accuracy 

across training and validation phases. 

VGG16, while achieving a relatively high training accuracy of 96.28%, experienced a slightly larger drop in 

validation performance (94.44%), indicating mild overfitting. This behaviour may stem from its simpler 

architecture and high parameter count, which lacks modern enhancements such as skip connections or dynamic 

scaling. 

InceptionV3, despite its deep and multi-path design, produced the lowest accuracy (91.87% training, 90.91% 

validation). This underperformance could be attributed to its complex architecture and input size requirement 

(299×299 pixels), which may require longer training time or more aggressive regularization to reach full potential. 

Given the eight-epoch constraint, the model likely under-converged in this setup. 
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Fig.11: Training vs Validation Accuracy by Model 

In terms of validation loss, depicted in Figure 12, the models exhibit distinct behaviours that reflect their 

architectural efficiency, convergence dynamics, and ability to generalize under a constrained training regime. 

ResNet50 again outperformed the others with the lowest validation loss (0.0861). This outcome suggests that the 

model achieved high classification accuracy and minimized the average error per prediction with remarkable 

consistency. The architectural use of residual connections allows for smoother gradient flow during 

backpropagation, effectively reducing vanishing gradient issues and optimizing deeper layers. As a result, 

ResNet50 reached a near-optimal loss minimum in fewer epochs without sacrificing generalization. 

EfficientNetV2B0, which also achieved competitive validation accuracy, recorded a loss of 0.1141. This relatively 

low value reflects the model’s efficient scaling strategy, which balances network depth, width, and resolution to 

optimize learning with fewer parameters. Modern activation functions like Swish and optimized regularization 

help the model maintain a stable learning trajectory with minimal overfitting. The slight increase in loss compared 

to ResNet50 may be attributed to its more aggressive parameter reduction, which, while improving efficiency, 

might slightly constrain representational capacity in complex visual settings like differentiating AI-generated 

textures from human-composed scenes. 

VGG16, with a validation loss of 0.1597, showed a more noticeable discrepancy between its training and 

validation performance. Despite achieving decent classification accuracy, the elevated loss value indicates that 

the model predictions were more uncertain or imprecise than those of ResNet50 and EfficientNetV2B0. VGG16 

lacks architectural innovations such as skip connections or adaptive scaling and has a high parameter count, 

making it more prone to overfitting, especially in low-epoch scenarios. This resulted in a model that fits training 

data well but struggles to generalize as confidently on unseen validation samples. 

In contrast, InceptionV3 recorded the highest validation loss (0.2207), consistent with its lower validation 

accuracy (90.91%) and slower convergence observed in training curves. This model employs a complex multi-

branch architecture with various convolutional kernel sizes and factorized layers to capture multi-scale features. 

However, such complexity typically requires more training epochs, careful tuning of learning rates, and often 

larger datasets to be fully effective. In our setup, limited to eight epochs for all models, InceptionV3 likely did not 
have sufficient time to converge fully, resulting in less confident predictions and a higher average error. 

The loss comparison underscores the importance of architectural choices and training efficiency in predictive 

performance and optimization behaviour. The alignment between low validation loss and high accuracy for 

ResNet50 and EfficientNetV2B0 validates the effectiveness of these models under constrained training 

conditions. Conversely, the elevated loss in VGG16 and InceptionV3 highlights the trade-offs between model 

complexity, generalization, and training depth, reinforcing the conclusion that ResNet50 provides the best 

accuracy, stability, and efficiency balance in this task. 
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Fig. 12: Training vs Validation Loss by Model 

The consistency between the accuracy and loss plots across all four models reinforces the reliability of the training 

configuration and validates the interpretability of the reported performance metrics. Models that achieved higher 

validation accuracy, such as ResNet50 and EfficientNetV2B0, also recorded correspondingly lower validation 

losses, indicating that their predictions were correct and made with high confidence. This alignment between 

accuracy and loss trends suggests stable convergence and effective optimization, critical in evaluating a model's 

generalization to unseen data. The visual performance comparisons across Figures 11 and 12 and the training 

curves in earlier figures demonstrate that ResNet50 offers the best trade-off between predictive accuracy and error 

minimization. Its superior accuracy, lowest validation loss, and smooth training trajectory point to a well-

balanced, robust model, and it is less susceptible to overfitting within the constraints of the dataset and training 

configuration. 

By integrating quantitative evaluation metrics (e.g., accuracy, loss, precision, F1-score, AUC) with visual analysis 

tools (e.g., training curves, bar charts), our methodology provides a comprehensive and reproducible framework 

for the comparative assessment of CNN architectures in the task of AI-generated image detection. This dual-

layered evaluation approach enables both empirical validation and interpretability of model behavior, which is 

essential for applications in media forensics and trustworthy AI. The insights derived from this multi-perspective 

analysis justify the selection of ResNet50 as the top-performing model and establish a solid empirical basis for 

future architectural benchmarking. The alignment of results across multiple evaluation dimensions confirms the 

rigor of our experimental design and supports the conclusions drawn in the subsequent sections. 

4.3 Test Set Evaluation 

To assess the generalization ability of each model, we evaluated them on a held-out test set comprising 10% of 

the dataset (~8,000 images). This test set was not used during training or validation. Performance was measured 

using accuracy, precision, recall, F1-score, AUC, and loss, to provide a comprehensive assessment of 

classification quality on unseen data. The results are presented in Table 3. 

Table 3. Test Set Performance Metrics for Each CNN Model 

Model Test Accuracy 

(%) 

Precision (%) Recall 

(%) 

F1-Score 

(%) 

AUC 

(%) 

Test Loss 

ResNet50 96.98 97.14 96.71 96.92 98.62 0.0893 

EfficientNetV2B0 95.81 95.36 95.89 95.62 97.94 0.1086 
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VGG16 93.75 92.88 94.21 93.54 96.31 0.1442 

InceptionV3 90.44 89.03 90.78 89.89 94.12 0.2015 

Note: Results were obtained using the held out 10% test set (n ≈ 8,000 images) after training each model on 

80% of the dataset and validating on 10%. No additional fine-tuning was performed on the test set. All metrics 

are reported in percentage format and rounded to two decimal places. 

• ResNet50 achieved the highest test accuracy (96.98%), supported by the lowest test loss (0.0893) among 

all models. It also recorded the highest AUC (98.62%), indicating excellent discriminative power 

between the AI-generated and human-created classes. The model’s precision (97.14%) and recall 

(96.71%) were well-balanced, producing a strong F1-score of 96.92%, confirming its ability to classify 

both classes with high confidence and minimal bias. These results are consistent with its validation 

performance, confirming that ResNet50 generalizes exceptionally well to unseen data. This reliability 

can be attributed to the model’s residual learning mechanism, which stabilizes deep training and 

preserves learned features. 

 

• EfficientNetV2B0 followed closely, achieving a test accuracy of 95.81% and a low loss of 0.1086. Its 

AUC of 97.94% reflects high confidence in classification boundaries, and its F1-score (95.62%) shows 

a near-equal balance between precision and recall. EfficientNet’s performance demonstrates the 

effectiveness of compound scaling and its ability to maintain efficiency without compromising accuracy. 

It proved a strong alternative to ResNet50, particularly when model size or inference speed is a concern. 

 

• VGG16 recorded a lower test accuracy of 93.75% and a higher test loss (0.1442), indicating weaker 

generalization. The F1-score (93.54%) and AUC (96.31%) suggest moderate discriminative capability. 

While the model learned the training data well (as seen in its high training accuracy), the larger drop in 

validation and test performance indicates mild overfitting. This can be attributed to VGG16’s lack of 

architectural regularization and its large number of parameters, which may have caused the model to 

memorize training features rather than generalize effectively. 

 

• InceptionV3 performed the weakest, with a test accuracy of 90.44%, the highest loss (0.2015), and the 

lowest AUC (94.12%) among the four models. Although its recall (90.78%) was reasonable, the lower 

precision (89.03%) resulted in an F1-score of 89.89%, indicating uncertainty in classification and less 

reliable predictions. InceptionV3’s complex architecture, which includes multiple kernel paths and 

higher input resolution (299×299), likely required longer training or more data to realize its potential. 

The eight-epoch training limit may have prevented it from fully converging. 

These results confirm that ResNet50 is this task's most reliable and well-generalized model, consistently 

outperforming others across all evaluation metrics. EfficientNetV2B0 also offers competitive results and could be 

preferred in environments requiring efficiency. VGG16, despite decent performance, shows vulnerability to 

overfitting, while InceptionV3 underperformed under the limited training regime. Including test set results 

strengthens the experimental validity of this study. It confirms that the model selection and training protocol are 

suitable for real-world deployment scenarios involving AI-generated content detection. 

5. FUTURE WORK 

While this study demonstrates the effectiveness of transfer learning using established CNN architectures for 

distinguishing AI-generated from human-created images, several promising directions exist for further 

enhancement and exploration. 

First, the current study utilizes frozen base models without fine-tuning the pre-trained convolutional layers. Future 

research could explore progressive fine-tuning strategies, where selective layers of the base network are unfrozen 

after initial convergence. This may enable the models to learn more domain-specific visual cues unique 

to AI-generated content, thereby improving classification robustness. 

Second, while the study focuses on four prominent CNN architectures (InceptionV3, ResNet50, 

EfficientNetV2B0, and VGG16), recent advances in deep learning suggest that vision transformers (ViTs) and 
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hybrid CNN–ViT architectures (e.g., Swin Transformer, ConvNeXt) may offer superior performance in capturing 

complex global dependencies within images. Investigating these architectures on the same task would provide 

valuable comparative insights. 

Moreover, the current dataset is well-balanced and curated. Future work should assess model performance under 

more challenging real-world conditions, including: 

• Class imbalance 

• Domain shifts (e.g., generative styles, artistic images) 

• Compressed or noisy image quality. Evaluating the generalizability of models across diverse datasets, 

including unseen AI-generative techniques such as Stable Diffusion, MidJourney, or StyleGAN variants, 

would further validate their utility. 

In addition, incorporating explainability techniques, such as Grad-CAM or LIME, could help interpret model 

predictions and build trust in deployment scenarios, especially in critical domains such as journalism, legal 

forensics, and content moderation. 

Lastly, future work could explore real-time and lightweight deployment strategies, such as model pruning or 

quantization, to adapt high-performing models for edge computing and mobile applications. Ensuring efficient 

inference would expand the practical usability of AI-detection systems in resource-constrained environments. 

6. CONCLUSION 

This study presents a comparative evaluation of four pre-trained convolutional neural network architectures—

ResNet50, VGG16, InceptionV3, and EfficientNetV2B0—applied to the binary classification task of 

distinguishing AI-generated images from human-created ones. Leveraging a transfer learning approach on a 

curated benchmark dataset, all models demonstrated strong classification capabilities, affirming the effectiveness 

of CNNs in this domain. 

ResNet50 emerged as the top performer among the architectures, achieving the highest validation accuracy 

(97.13%) and the lowest validation loss (0.0861). Its residual learning structure likely facilitated deeper feature 

extraction and generalization to unseen samples. EfficientNetV2B0 followed closely with 96.11% accuracy and 

strong overall performance, balancing depth and computational efficiency. VGG16, while older in design, showed 

respectable results (94.44%) but with higher validation loss, suggesting a tendency toward overfitting. 

InceptionV3 underperformed compared to the others, potentially due to its architectural complexity and limited 

training epoch. 

These findings underscore the viability of transfer learning with deep CNNs for synthetic image detection and 

highlight ResNet50 as a dependable candidate for real-world AI-content verification systems. The results provide 

a foundational benchmark and open the door to further investigation into advanced architecture, fine-tuning 

strategies, and deployment in adversarial or dynamic environments. 
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